Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T10:13:25.191Z Has data issue: false hasContentIssue false

Keys to the Enhanced Performance of Mercuric Iodide Radiation Detectors Provided by Diffraction Imaging

Published online by Cambridge University Press:  10 February 2011

Bruce Steiner
Affiliation:
NIST, Gaithersburg, MD 20899-8520
Lodewijk van den Berg
Affiliation:
Constellation Technology, Inc., Largo, FL 33777
Uri Laor
Affiliation:
NRCN, Be'er Sheva 84910, Israel
Get access

Abstract

High resolution monochomatic diffraction imaging is playing a central role in the optimization of novel high energy radiation detectors for superior energy resolution at room temperature. In the early days of the space program, the electronic transport properties of mercuric iodide crystals grown in microgravity provided irrefutable evidence that substantial property improvement was possible. Through diffraction imaging, this superiority has been traced to the absence of inclusions. At the same time, other types of irregularity have been shown to be surprisingly less influential. As a result of the knowledge gained from these observations, the uniformity of terrestrial crystals has been modified, and their electronic properties have been enhanced. Progress toward property optimization through structural control is described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Iwanczyk, J. S., Dorri, N., Wang, M., Szawlowski, M, Patt, B. A., Warburton, W. A., Hedman, B., and Hodgson, K. O., “The Hgl2 Energy Dispersive x-ray Detectors and Miniaturized Processing Electronics Project”, IEEE Trans. Nucl. Sci. 37, 198202 (1990)10.1109/23.106618Google Scholar
2 Iwanczyk, Jan S., “Advances in Mercuric Iodide -Ray Detectors andLow Noise Preamplification Systems”, Nucl. Inst. Meth, Phys. Res. A 283, 208214 (1989)10.1016/0168-9002(89)91357-0Google Scholar
3 Iwanczyk, J. S., Dorri, N., Wand, M., Szawlowski, M., Warburton, W. A., Hedman, B., and Hodgson, K. O., “Advances in mercuric iodide energy dispersive x-ray array detectors and associated miniaturized processing electronics”, Rev. Sci. Inst. 60, 15611567 (1989)10.1063/1.1141035Google Scholar
4 lwanczyk, J. S., Wang, Y. J., Dorri, N., Dabrowski, A. J., Economou, T. V., and Turkevich, A. L.Use of Mercuric Iodide x-ray Detectors with Alpha Backscattering Spectrometers for Space Applications”, IEEE Trans. Nucl. Sci 38, 574579 (1991)10.1109/23.289359Google Scholar
5 Patt, B. A., Dolin, R. C., Devore, T. M., Markakis, J. M, Iwanczyk, J. S., Dorni, N., and Trombka, J., “Radiationdamage resistance in mercuric iodide x-ray detectors”, Nucl. Inst. Meth. Phys Res. A 299, 176181 (1990)10.1016/0168-9002(90)90771-WGoogle Scholar
6 Milstein, B., Farber, B., Kim, K., Berg, L. van den, and Schnepple, W. F., “Influence of Temperature upon Dislocation Mobility and Elastic Limit of single Crystal HgI2 ”, Nucl. Inst. Meth. 213, 6576 (1983)10.1016/0167-5087(83)90043-1Google Scholar
7 Berg, L. van den, Schnepple, W., Ortale, C., and Schieber, M., “Vapor Growth of Doped Mercuric Iodide Crystals by the Temperature Oscillation Method,” J. Cryst. Growth 42, 160165 (1977)10.1016/0022-0248(77)90190-7Google Scholar
8 Burger, A., Morgan, S., He, C., Silberman, E., Berg, L. van den, Ortale, C., Franks, L., and Schieber, M., “A Study of Inhomogeneity and Deviations from Stoichiometry in Mercuric Iodide, “J. Cryst. Growth 99, 988993 (1990)10.1016/S0022-0248(08)80068-1Google Scholar
9 Lamonds, H. A., “Review of Mercuric Iodide Development Programin Santa Barbara”,Nuci. Inst. Meth. 213, 512, (1983)10.1016/0167-5087(83)90034-0Google Scholar
10 Steiner, Bruce, Berg, Lodewijk van den, and Laor, Uri, “High resolution Diffraction Imaging of Mercuric Iodide: Demonstration of the Necessity for Alternate Crystal Processing Techniques for Highly Purified Material.” Mat. Res. Soc. Symp. 375, 259264 (1995)10.1557/PROC-375-259Google Scholar
11 Berg, L. van den, “Growth of Single Crystals of Mercuric Iodide on the Groundand in Space,” Mater. Res. Soc. Proc. 302, 7383 (1993)10.1557/PROC-302-73Google Scholar
12 Steiner, Bruce; Berg, Lodewijk van den, and Laor, Uri, “Enhancement of Mercuric Iodide Detector Performance through Increases in Wafer Uniformity by Purificationand Crystal Growth in Microgravity,” J. Appl. Phys. In press, October 15 issue (1999)10.1063/1.371420Google Scholar
13 Chernov, A. A., “How does the flow within the boundary layer influence morphological stability of a vicinal face?”, J. Cryst. Growth 118, 333347 (1992)10.1016/0022-0248(92)90080-3Google Scholar
14 Chernov, A. A., “Formation of crystals in solutions”, Contemp. Phys. 30, 251276 (1989)10.1080/00107518908225517Google Scholar
15 Chernov, A. A., Kuznetsov, Yu. G., Smol'skii, I.L., and Rozhanskii, V.N., “Hydrodynamic effects in growth of ADP crystals from aqueous solutions in the kinetic regime”, Kristallografiya 31, 11931200 (1986); Soy. Phys. Crystallogr. 31, 705–709 (1986)Google Scholar