Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:45:38.182Z Has data issue: false hasContentIssue false

Junctions for Deep Sub-100 NM MOS: How Far will Ion Implantation Take Us?

Published online by Cambridge University Press:  17 March 2011

H.-J. Gossmann
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
C. S. Rafferty
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
P. Keys
Affiliation:
University of Florida, Gainesville, FL 32611
Get access

Abstract

We analyze the requirements that the International Technology Roadmap for Semiconductors (ITRS) implicitly imposes on the two-dimensional source/drain (SD) dopant profile and translate the results into implant parameters (energy, dose, peak concentration). We do this by determining the voltage drop that the SD current develops across the three main (exclusive of the channel) resistive components in the current path: the spreading resistance in the extension region; the metal-semiconductor contact; and the resistance in the link-up region where the SDregion meets the channel. The largest resistance occurs in the link-up region, followed by the resistance of the contact; the extension contribution is the smallest. The extension resistance requirement can be satisfied by ion-implantation for all generations of the ITRS. The link-up region requires very abrupt lateral profiles, not demonstrated so far by ion-implantation. It is found that such resistance cannot be reduced without impacting the intrinsic device behavior. The contact eventually necessitates dopant concentrations in excess of solid solubility and for NMOS in excess of the fundamental limit of dopant activation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Semiconductor Industry Association, The National Technology Roadmap for Semiconductors (SIA, San Jose, 1999), http://www.itrs.net/ntrs/publntrs.nsf.Google Scholar
2.IMSIL, Hobler, G., TU Vienna, Austria, 1996 Google Scholar
3. Solmi, S., Landi, E. and Baruffaldi, F., J. Appl. Phys. 68, 3250 (1990).10.1063/1.346376Google Scholar
4. Solmi, S. and Nobili, D., J. Appl. Phys. 83, 2484 (1998).10.1063/1.367008Google Scholar
5. Fiory, A. T., Bourdelle, K. K., Lefrancois, M. E., Camm, D. M., and Agarwal, A., Electrochem. Soc. Proc. 99–10, 133 (1999). 258c257,258 Google Scholar
6. Agarwal, A., Fiory, A. T., Gossmann, H.-J., Rafferty, C. S., Frisella, P., and Hebb, J., Mater. Sci. in Semicond. Proc. 1, 237 (1999).10.1016/S1369-8001(98)00030-4Google Scholar
7. Saito, S., private communicationGoogle Scholar
8. Downey, D. F., Felch, S. B., Falk, S. W., Electrochem. Soc. Proc. 99–10, 151 (1999).Google Scholar
9. Ng, K. K. and Lynch, W. T., IEEE Trans. Electron. Dev. ED–33, 965 (1986).10.1109/T-ED.1986.22602Google Scholar
10. Yu, A. Y. C., Solid State Electronics 13, 239 (1970).10.1016/0038-1101(70)90056-0Google Scholar
11. Taur, Yuan, IEEE Trans. Electron Dev. 47, 160 (2000).10.1109/16.817582Google Scholar
12. Agarwal, Aditya, Gossmann, Hans-J., and Fiory, Anthony T., MRS Symp. Proc. 568, 19 (1999).10.1557/PROC-568-19Google Scholar
13. Gossmann, H.-J., Unterwald, F. C., and Luftman, H. S., J. Appl. Phys. 73, 8237 (1993).10.1063/1.353441Google Scholar
14. Antoniadis, Dimitri A., Djomehri, Ihsan J., Jackson, Keith M., and Miller, Stephanie, “Well-Tempered” Bulk-Si NMOSFET Device, http://www-mtl.mit.edu/Well/.Google Scholar