Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T05:45:17.671Z Has data issue: false hasContentIssue false

IV-VI Compound Semiconductor Mid-Infrared Vertical Cavity Surface Emitting Lasers Grown by MBE

Published online by Cambridge University Press:  10 February 2011

Z. Shi
Affiliation:
School of Electrical and Computer Engineering, 202 West Boyd, Norman OK 73019, [email protected]
G. Xu
Affiliation:
School of Electrical and Computer Engineering, 202 West Boyd, Norman OK 73019
P.J. McCann
Affiliation:
School of Electrical and Computer Engineering, 202 West Boyd, Norman OK 73019
X. M. Fang
Affiliation:
School of Electrical and Computer Engineering, 202 West Boyd, Norman OK 73019
N. Dai
Affiliation:
Department of Physics and Astronomy University of Oklahoma
W. W. Bewley
Affiliation:
Naval Research Laboratory, Washington, DC 20375
C. L. Felix
Affiliation:
Naval Research Laboratory, Washington, DC 20375
I. Vurgaftman
Affiliation:
Naval Research Laboratory, Washington, DC 20375
J. R Meyer
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Mid-infrared vertical cavity surface emitting lasers (VCSELs) using PbSe as the active material and broadband high reflectivity Pb1−xSrxSe/BaF 2 distributed Bragg reflectors (DBR) as bottom and top mirrors were grown by molecular beam epitaxy. By pulsed optical pumping, this first IV-VI semiconductor VCSEL operated up to 290K at a wavelength of 4.5 µm. Further optimization of such VCSELs could lead to room temperature continuos wave operation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tacke, M., Infrared Phys. Tech 36, 447 (1995).Google Scholar
2. Feit, Z., McDonald, M., Woods, R.J, Archambault, V. and Mak, P., Appl. Phys. Lett 68, 738 (1996).Google Scholar
3. Schliessl, U. P. and Rohr, J., Infr. Phys. Tech. 40, 325 (1999).Google Scholar
4. Faist, J., Capasso, F., Sirtori, C., Sivco, D. L., Baillargeon, J. N., Hutchinson, A. L., Chu, S.G and Cho, A. Y., Appl. Phys. Lett. 68, 3680 (1996).Google Scholar
5. Slivken, S., Matlis, A., Rybaltowski, A., Xu, Z., and Razeghi, M., Appl. Phys. Lett. 74, 2758 (1999).Google Scholar
6. Bewley, W. W., Felix, C. L., Vurgafitman, I., Stokes, D. W., Aifer, E. H., Olafsen, L. J., Meyer, J. R., Yang, M. J., Shanabrook, B. V., Lee, H., Martinelli, R. U., and Sugg, A. R., Appl. Phys. Lett. 74, 1075 (1999).Google Scholar
7. Yang, R.Q, Bruno, J.D, Bradshaw, J.L, Pham, J.T and Wortman, D.E, Electron. Lett 35, 1254 (1999).Google Scholar
8. Klann, R., Hofer, T., Buhleier, R., Elsaesser, T., and Tomm, J. W., J. Appl. Phys. 77, 277 (1995).Google Scholar
9. Findlay, P. C., Pidgeon, C. R., Murdin, B. N., Meer, A. F. G. van der, Langerak, A. F. G., Ciesla, C. M., Oswald, J., Springholz, G., and Bauer, G., Phys. Rev. B 58, 12908 (1998).Google Scholar
10. Shi, Z., Tacke, M., Lambrecht, A. and Boettner, H., Appl. Phys. Lett. 66, 2573 (1995).Google Scholar
11. Lambrecht, A., Herres, N., Spanger, B., Kuhn, S., Boettner, H., Tacke, M., and Evers, J., J. Crystal Growth 108, 310 (1991).Google Scholar
12. Springholz, G., Shi, Z. and Zogg, H., Eds. Liu, W. K., & Santos, M. B., World Scientific, 1999.Google Scholar
13. Felix, C. L., Bewley, W. W., Vurgaftman, I., Meyer, J. R., Goldberg, L., Chow, D. H., and Selvig, E., Appl. Phys. Lett. 71, 3483 (1997).Google Scholar