Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T16:18:11.620Z Has data issue: false hasContentIssue false

Isotopes in Neutron Diffraction – Detailed Structural Analysis at the Metal-Insulator Transition in SmNiO3

Published online by Cambridge University Press:  18 March 2011

Mark T. Weller
Affiliation:
ISIS, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon., OX11 0QX, UK
Paul F. Henry
Affiliation:
ISIS, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon., OX11 0QX, UK
C.C. Wilson
Affiliation:
Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
Get access

Abstract

The use of isotopically enriched materials on high intensity neutron powder diffractometers allows the derivation of much higher quality structural information than has hitherto been possible. The technique can be applied to materials such as ferroelectrics, superconductors and oxides exhibiting colossal magneto-resistance, where small structural changes associated with phase transitions need to be characterised. Three isotopically pure samples of samarium nickelate have been studied around the metal-insulator transition at 403 K. Simultaneous multi-histogram refinements permit extraction of very high quality structural information that shows smooth variations in bond lengths and angles with all nickel oxygen distances decreasing as the electrons localise.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. David, W.I.F. Harrison, W.T.A., J.M.F Gunn, Moze, O., Soper, A.K., Day, P., Jorgensen, J.D., Hinks, D.G., Beno, M.A., Soderholm, L., Capone, D.W., Schuller, I.K., Segre, C.U., Zhang, K., Grace, J.D., Nature 327, 310 (1987).Google Scholar
2. Prassides, K., Christides, C., Thomas, I.M., Mizuki, J., Tanigaki, K., Hirasawa, I., Ebbesen, T.W., Science 263, 950 (1994).Google Scholar
3. Moreo, A., Yunoki, S., Dagotto, E., Science 283, 2034 (1999).Google Scholar
4. Kwei, G.H., Lawson, A.C., Billinge, S.J.L. Cheong, S.-W., J. Phys Chem. 97, 2368 (1993).Google Scholar
5. Evans, J.S.O., Hu, Z., Jorgensen, J.D., Argyriou, D.N., Short, S., Sleight, A.W., Science 275, 6165 (1997).Google Scholar
6. Vitale, G., Mellot, C.F., Cheetham, A.K., J. Phys. Chem. B 101, 9886 (1997).Google Scholar
7. Vogt, T., Fitch, A.N., Cockcroft, J.K., Science 263, 1265 (1994); R.Bau, M.H. Drabnis, L. Garlaschelli, W.T. Klooster, Z.W. Xie, T.F. Koetzle, S. Martinengo, Science 275, 1099 (1997).Google Scholar
8.Neutron News 3(3), 29 (1992).Google Scholar
9. Rodriguez-Carvajal, J., Rosenkranz, S., Medarde, M., Lacorre, P., Fernandez-Diaz, M.T., Fauth, F., Trounov, V., Phys. Rev. B 57(1), 456 (1998).Google Scholar
10. Cleaver, B., Currie, D.B., High Temp. High Press. 22, 623 (1990).Google Scholar
11. Larson, A.C., Dreele, R.B. Von, Generalised Structure Analysis System, Los Alamos National Laboratory, (1994).Google Scholar
12. Granados, X., Fontcuberta, J., Obradors, X., Torrance, J. B., Phys Rev B 46, 15683 (1992).Google Scholar
13. Williams, W.G., Ibberson, R.M., Day, P., Enderby, J.E., Physica B 241, 234, 1997.Google Scholar
14. Weller, M.T., Henry, P.F., Wilson, C.C., J. Phys. Chem. B (in press).Google Scholar