Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T07:58:52.495Z Has data issue: false hasContentIssue false

Island-Size Distributions for Submonolayer Epitaxy: Rate Equations and Beyond

Published online by Cambridge University Press:  10 February 2011

D.D. Vvedensky
Affiliation:
The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom Department of Mathematics, University of California, Los Angeles, CA 90095-1555 SHRL Laboratories LLC, 3011 Malibu Canyon Road, Malibu, CA 90265
R.E. Caflisch
Affiliation:
Department of Mathematics, University of California, Los Angeles, CA 90095-1555
M.F. Gyure
Affiliation:
SHRL Laboratories LLC, 3011 Malibu Canyon Road, Malibu, CA 90265
B. Merriman
Affiliation:
Department of Mathematics, University of California, Los Angeles, CA 90095-1555
S. Osher
Affiliation:
Department of Mathematics, University of California, Los Angeles, CA 90095-1555
C. Ratsch
Affiliation:
Department of Mathematics, University of California, Los Angeles, CA 90095-1555 SHRL Laboratories LLC, 3011 Malibu Canyon Road, Malibu, CA 90265
J.J. Zinck
Affiliation:
SHRL Laboratories LLC, 3011 Malibu Canyon Road, Malibu, CA 90265
Get access

Abstract

The scanning tunnelling microscope has revolutionized the quantitative analysis of epitaxial phenomena. This, in turn, has spawned a huge theoretical effort aimed at analyzing various aspects of the morphology of growing surfaces. One of the most important general approaches to have emerged from this effort is based on the application of scaling concepts to epitaxial island-size distributions in the regime of submonolayer coverage prior to coalescence. We first discuss the analytical basis for scaling solutions to rate equations. In the limit of irreversible aggregation, a solution is obtained in terms of the capture numbers which agrees with previous work. For reversible aggregation, we identify a new quantity that may be regarded as a continuous analogue of a critical island size. We then examine the influence of spatial correlations by introducing a method for modeling epitaxial phenomena in terms of the motion of island boundaries, which is implemented numerically using the level set method. This island dynamics model is continuous in the lateral directions, but retains atomic scale discreteness in the growth direction. Several choices for the island boundary velocity are discussed and computations of the island dynamics model using the level set method are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smoluchowski, M. von, Phys. Z. 17, 557, 585 (1916).Google Scholar
2. Bartelt, M.C. and Evans, J.W., Phys. Rev. B 46, 12 675 (1992); J.W. Evans and M.C. Bartelt, J. Vac. Sci. Technol. A 12, 1800 (1994).Google Scholar
3. Viscek, T. and Family, F., Phys. Rev. Lett. 52, 1669 (1984).Google Scholar
4. Stroscio, J.A. and Pierce, D.T., Phys. Rev. B 49, 8522 (1994).Google Scholar
5. Müller, B., Nedelmann, L., Fischer, B., Brune, H., and Kern, K., Phys. Rev. B 54, 17 858 (1996).Google Scholar
6. Bressler-Hill, V., Varma, S., Lorke, A., Nosho, B.Z., Petroff, P.M., and Weinberg, W.H., Phys. Rev. Lett. 74, 3209 (1995).Google Scholar
7. Avery, A.R., Dobbs, H.T., Holmes, D.M., Joyce, B.A., and Vvedensky, D.D., Phys. Rev. Lett. 79, 3938 (1997).Google Scholar
8. Ratsch, C., Zangwill, A., Smilauer, P., and Vvedensky, D.D., Phys. Rev. Lett. 72, 3194 (1994).Google Scholar
9. Ratsch, C., Smilauer, P., Zangwill, A., and Vvedensky, D.D., Surf. Sci. 329, L599 (1995).Google Scholar
10. Bartelt, M.C., Perkins, L.S., and Evans, J.W., Surf. Sci. 344, L1193 (1995).Google Scholar
11. Kandel, D., Phys. Rev. Lett. 78, 499 (1997).Google Scholar
12. Schroeder, M. and Wolf, D.E., Phys. Rev. Lett. 74, 2062 (1995).Google Scholar
13. Chambliss, D.D. and Johnson, K.E., Phys. Rev. B 50, 5012 (1994).Google Scholar
14. Zangwill, A. and Kaxiras, E., Surf. Sci. 326, L483 (1995).Google Scholar
15. Copel, M., Reuter, M.C., Kaxiras, E., and Tromp, R.M., Phys. Rev. Lett. 63, 632 (1989); R.M. Tromp and M.C. Reuter, Phys. Rev. Lett. 68, 954 (1992); B. Voigtlinder and A. Zinner, Surf. Sci. Lett. 292, L775 (1993); J. Vrijmoeth, H.A. van der Vegt, J.A. Meyer, E. Vlieg, and R.J. Behm, Phys. Rev. Lett. 72, 3843 (1994); S. Esch, M. Hohage, T. Michely, and G. Comsa, Phys. Rev. Lett. 72, 518 (1994).Google Scholar
16. Stringfellow, G.B., Organometallic Vapor Phase Epitaxy: Theory and Practice, (Academic, Boston, 1989).Google Scholar
17. Ratsch, C., Zangwill, A., and Smilauer, P., Surf. Sci. Lett. 314, L937 (1994).Google Scholar
18. Dobbs, H.T., Zangwill, A., and Vvedensky, D.D., in Surface Diffusion: Atomistic and Collective Processes, ed. Tringides, M.C. (Plenum, New York, 1997), pp. 83101.Google Scholar
19. Petroff, P.M. and DenBaars, S.P., Superlattices and Microstructures 15, 15 (1994); W. Seifert, N. Carlsson, M. Miller, M.-E. Pistol, L. Samuelson, and L. R. Wallenberg, Prog. Crystal Growth and Charact. 33, 423 (1996).Google Scholar
20. Bartelt, M.C. and Evans, J.W., Phys. Rev. B 54, R17 359 (1996).Google Scholar
21. Bales, G.S. and Chzan, D.C., Phys. Rev. B 50, 6057 (1994).Google Scholar
22. Osher, S. and Sethian, J.A., J. Comp. Phys. 79, 12 (1988).Google Scholar
23. Chen, S., Merriman, B., Osher, S., and Smereka, P., J. Comp. Phys. 135, 8 (1997).Google Scholar
24. Venables, J.A., Spiller, G.D.T., and Hanbiicken, M., Rep. Prog. Phys. 47, 399 (1984).Google Scholar
25. Amar, J.G. and Family, F., Surf. Sci. 382, 170 (1997).Google Scholar
26. Sussman, M., Smereka, P., and Osher, S., J. Comp. Phys. 114, 146 (1994).Google Scholar
27. Peng, D., Merriman, B., Osher, S., Zhao, H.K., and Kang, M., unpublished.Google Scholar
28. Weeks, J.D. and Gilmer, G.H., Adv. Chem. Phys. 40, 157 (1979); S. Clarke and D.D. Vvedensky, Phys. Rev. Lett. 58, 2235 (1987); A. Madhukar and S.V. Ghaisas, CRC Crit. Rev. Sol. State and Mater. Sci. 14, 1 (1988); H. Metiu, Y.-T. Lu, and Z.Y. Zhang, Science 255, 1088 (1992).Google Scholar
29. Caflisch, R.E., Gyure, M.F., Merriman, B., Osher, S., Ratsch, C., Vvedensky, D.D., and Zinck, J.J., unpublished.Google Scholar
30. Gyure, M.F., Merriman, B., Caflisch, R.E., Osher, S., Ratsch, C., Zinck, J.J., and Vvedensky, D.D., unpublished.Google Scholar