Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T21:49:04.103Z Has data issue: false hasContentIssue false

Island decay on the anisotropic Ag(110) surface

Published online by Cambridge University Press:  17 March 2011

Karina Morgenstern
Affiliation:
Institute of Physics and Astronomy and CAMP, University of Aarhus, DK - 8000 Aarhus C., Denmark Institut für Experimentalphysik, FU Berlin, D - 14195 Berlin, Germany
Erik Lægsgaard
Affiliation:
Institute of Physics and Astronomy and CAMP, University of Aarhus, DK - 8000 Aarhus C., Denmark
Flemming Besenbacher
Affiliation:
Institute of Physics and Astronomy and CAMP, University of Aarhus, DK - 8000 Aarhus C., Denmark
Get access

Abstract

We have investigated the decay of two-dimensional islands on the anisotropic Ag(110) surface using variable-temperature scanning tunneling microscopy. Contrary to predictions from traditional Ostwald ripening theory, a quasi-one-dimensional decay mode is observed at low temperatures (175-220 K). A surprisingly sharp transition to the quasi-two-dimensional decay mode is observed around 220 K. This transition is accompanied by a fast equilibration of the island shape. These findings have tentatively been rationalized within a simple model to identify the underlying rate limiting atomistic processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Peale, D. R. and Cooper, B. H., J. Vac. Sci. Technol. A10, 2210 (1992).Google Scholar
2. Theis, W., Bartelt, N. C., and Tromp, R. M., Phys. Rev. Lett. 75, 3323 (1995).Google Scholar
3. Bartelt, N. C., Theis, W., and Tromp, R. M., Phys. Rev. B54, 11741 (1996).Google Scholar
4. Morgenstern, K., Rosenfeld, G., and Comsa, G., Phys. Rev. Lett. 76, 2113 (1996).Google Scholar
5. Wen, J.-M., Evans, J. W., Bartelt, M. C., Burnett, J. W., and Thiel, P. A., Phys. Rev. Lett. 76, 652 (1996).Google Scholar
6. Hannon, J. B., Klünker, C., Giesen, M., Ibach, H., Bartelt, N. C., and Hamilton, J. C., Phys. Rev. Lett. 79, 2506 (1997).Google Scholar
7. Ichimiya, A., Tanaka, Y., and Ishiyama, K., Surf. Sci. 386, 182 (1997).Google Scholar
8. Giesen, M., Icking-Konert, G. Schulze, Ibach, H., Phys. Rev. Lett. 80, 552 (1998).Google Scholar
9. Morgenstern, K., Rosenfeld, G., Lægsgaard, E., Besenbacher, F., and Comsa, G., Phys. Rev. Lett. 80, 556 (1998).Google Scholar
10. Morgenstern, K., Rosenfeld, G., and Comsa, G., Surf. Sci. 441, 289 (1999).Google Scholar
11. Poensgen, M., Wolf, J. F., Frohn, J., Giesen, M., and Ibach, H., Surf. Sci. 274, 430 (1992); L. Kuipers, M. S. Hoogeman, and J. W. M. Frenken, Phys. Rev. Lett. 71, 3517 (1993); K. Morgenstern, G. Rosenfeld, B. Poelsema, and G. Comsa, Phys. Rev. Lett. 74, 2058 (1995); W. W. Pai, N. C. Bartelt, and J. E. Reutt-Robey, Phys.Rev. B53, 15991 (1996).Google Scholar
12. Pai, W. W., Swan, A.K., Zhang, Z., and Wendelken, J. F., Phys. Rev. Lett. 79, 3210 (1997).Google Scholar
13. Morgenstern, K., Lægsgaard, E., Stensgaard, I., and Besenbacher, F., Phys. Rev. Lett. 83, 1613 (1999); K. Morgenstern, E. Lægsgaard, I. Stensgaard, F. Besenbacher, M. Böhringer, W.-D. Schneider, R. Berndt, F. Mauri, A. De Vita, and R. Car, Appl. Phys. A69, 559 (1999).Google Scholar
14. Lifshitz, L. M. and Slyozov, V. V., J. Phys. Chem. Solids 19, 35 (1961); C. Wagner, Z. Electrochem. 65, 581 (1961).Google Scholar
15. Bartelt, N. C. and Evans, J., Europhys. Lett. 21, 99 (1993).Google Scholar
16. Landau, L. D. and Lifshhitz, E. M., Course of Theoretical Physics, Vol. 5: Statistical Physics Hontinfinde, F., Ferrando, R., and Levi, A. C., Surf. Sci. 366, 306 (1996).Google Scholar
18. Besenbacher, F., Rep. Prog. Phys. 59, 1737 (1996).Google Scholar
19.The lowest temperature reported in literature is (725 ± 25) K: Held, G. A., Sweet, J. L. Jordan -, Horn, P. M., Mak, A., and Birgeneau, R.J., Phys. Rev. Lett. 59, 2075 (1987).Google Scholar
20. Mo, Y.-W., Swartzentruber, B. S., Kariotis, R., Webb, M. B., and Lagally, M. G., Phys. Rev. Lett. 63, 2393 (1989); Y.-W. Mo, J. Kleiner, M. B. Webb, M. G. Lagally, Phys. Rev. Lett. 66, 1998 (1991).Google Scholar
21. Ferrando, R., Hontefinde, F., and Levi, A. C., Phys. Rev. B56, R4406 (1997).Google Scholar
22. Morgenstern, K., Rosenfeld, G., Poelsema, B., and Comsa, G., Surf. Sci. 352–354, 956 (1996); J. Li, R. Berndt, and W.-D. Schneider, Phys. Rev. Lett. 76, 1888 (1996).Google Scholar
23. Zinke-Allmang, M., Feldman, L. C., and M. H.Garbow, Surf. Sci. Rep. 16, 337 (1992); J.G. McLean, B. Krishnamachari, D. R. Peale, E. Chason, J. P. Sethna, and B. H. Cooper, Phys. Rev. B55, 1811 (1997) and references therein.Google Scholar
24. Rosenfeld, G., Morgenstern, K., and Comsa, G., in Surface Diffusion: Atomistic and Colletive Processes, ed. Tringides, M.C. (Plenum Press, New York 1997).Google Scholar
25.In principle, it is not very sensible to determine βY for temperatures below 220 K, since in this case the width Y of the islands stays approximately constant (Figs. 5a). This constancy is, however, not always as obvious as in the example shown. We include the data here for comparison purposes.Google Scholar
26. Stoltze, P., J. Phys. Condens. Matter 6, 9495 (1994); J. K. Nørskov, K. W. Jacobsen, P. Stoltze, and L. B. Hansen, Surf. Sci. 283, 277 (1993).Google Scholar
27. Li, Y., Bartelt, M. C., Evans, J. W., Waelchi, N., Kampshoff, E., and Kern, K., Phys. Rev. B56, 12539 (1997).Google Scholar