Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T03:14:46.829Z Has data issue: false hasContentIssue false

IR Transmission Chalcogenide Glass Fibers

Published online by Cambridge University Press:  15 February 2011

T. Yamagishi
Affiliation:
Non-Oxide Glass Co. Ltd., 668, Iwahara, Minamiashigara, Kanagawa. 250-01 Japan
I. Inagawa
Affiliation:
Non-Oxide Glass Co. Ltd., 668, Iwahara, Minamiashigara, Kanagawa. 250-01 Japan
J. Nishii
Affiliation:
Non-Oxide Glass Co. Ltd., 668, Iwahara, Minamiashigara, Kanagawa. 250-01 Japan
Get access

Abstract

Several chalcogenide glass fibers with Teflon cladding and glass cladding were prepared for infrared optical application. A minimum transmission loss, at C02 laser wavelength, of 0.9 dB/m was attained in SeTel glass fiber. The CO and CO2 laser power transmission characteristics of fibers were investigated. Selenide and telluride glass fibers yielded damage thresholds lower than sulfide glass fiber because of their large temperature dependence of refractive index and transmission loss. Deliveries of 80 W of CO laser light in AsS glass fiber, and 10 W of CO2 laser light in GeSeTe glass fiber, were attained. An AsS fiber bundle of 8400 cores was prepared, which could deliver a clear thermal image below 100 °C. Prepared fibers were also found useful for low temperature monitoring and gas sensing in narrow or restricted spaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nishii, J., Yamashita, T. and Yamagishi, T., Appl. Opt. 28, 5122(1989).10.1364/AO.28.005122CrossRefGoogle Scholar
2. Nishii, J.. Morimoto, S., Inagawa, I., Iizuka, R., Yamashita, T. and Yamagishi, T., to be published in J. Non-Cryst. Sol. (1991).Google Scholar
3. Nishii, J., Morimoto, S., Yokota, R. and Yamagishi, T., J. Non-Cryst. Sol. 95&96, 641(1987).10.1016/S0022-3093(87)80663-4Google Scholar
4. Nishii, J.. Yamashita, T. and Yamagishi, T., J. Mater. Sci. 24, 4293 (1989).10.1007/BF00544501CrossRefGoogle Scholar
5. Katsuyama, T., Ishida, K., Satoh, S. and Matsumura, H., Appl. Phys. Lett. 45, 925(1984).10.1063/1.95462Google Scholar
6. Inagawa, I., lizuka, R., Yamagishi, T. and Yokota, R., J. Non-Cryst. Sol. 95&96, 801(1987).10.1016/S0022-3093(87)80684-1Google Scholar
7. Nishii, J.. Inagawa, I., Morimoto, S., lizuka, R., Yamashita, T. and Yamagishi, T., Proc. SPIE, Infrared Fiber Optics II 1228, 224 (1990).10.1117/12.18641Google Scholar
8. Deutsch, T. F., J. Electro. Mat. 4, 663(1975).10.1007/BF02661168Google Scholar
9. Ueda, T., Yamada, K. and Sugita, T.. Bull. Jpn. Soc. Precision Eng. 56, 113(1990).Google Scholar
10. Nishii, J., Yamashita, T., Yamagishi, T., Tanaka, T. and Sono, H.. Appl. Phys. Lett. 59 (21), 1(1991).10.1063/1.105923Google Scholar
11. Maeda, M., Chemical Sensor Technology, vol.3. edited by Yamazoe, N. (Kodansha Ltd., Tokyo, 1991) p. 185.Google Scholar
12. Heo, J.. Rodrigues, M., Sagges, S. J. and Sigel, G. H. Jr., Appl. Opt. (1991) in press.Google Scholar