Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T05:11:33.783Z Has data issue: false hasContentIssue false

Ion/Neutral Beam Assisted Etching of Semiconductors: Chemical Modifications of the Adsorbed Phase

Published online by Cambridge University Press:  16 February 2011

Glenn. C. Tyrrell
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London, WCIE 7JE, UK
Duncan Marshall
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London, WCIE 7JE, UK
Richard B. Jackman
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London, WCIE 7JE, UK
Get access

Abstract

This paper addresses the fundamental aspects of etching semiconductors with inert gas beams in the presence of a suitable precursor gas. In particular, the changes that an energetic bombarding ion/neutral species cause to the surface and sub-surface region of a solid are considered, both in terms of the introduction of damage to the semiconductor and chemical processes that are provoked in the adsorbed states present. The implications for practical etching reactions are then discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tyrrell, G.C., Boyd, I.W. and Jackman, R.B. Appl. Surf. Sci., 43. 439 (1989)Google Scholar
2. Murrell, A.j., Price, R.J., Jackman, R.B. and Foord, J.S., Surf. Sci., 227,197 (1990)Google Scholar
3. Dieleman, J., Sanders, F.H.M., Kolfschoten, A.W., Zalm, P.C., deVries, A.E and Haring, A. J. Vac. Sci. Tech., B3, 1884 (1985)Google Scholar
4. Ochiai, Y., Shihoyama, K., Shiokawa, T., Toyoda, K., Masuyama, A. Gamo, K. and Namba, S. J. Vac. Sci. Tech.,B4,333 (1986)Google Scholar
5. Linhard, J., Scharff, M. and Schiott, H. Mat. Fys. Med. Dan. Vid. Selsk 3, 1 (1963)Google Scholar
6. Zalm, P.C. Vacuum 36 787 (1986)Google Scholar
7. Sigmund, P. Phys. Rev., 184, 383 (1969)Google Scholar
8. Yamamura, Y. and Bohdansky, J. Vacuum 35 561 (1985)Google Scholar
9. Kelly, R. Nucl. instr. Meth. Phys. Res., B18,388 (1987)Google Scholar
10. Andersen, H.H. Nucl. Instr. Meth. Phys. Res., b33 466 (1988)Google Scholar
11. Sigmund, P. J. Vac. Sci. Tech., A7, 585 (1989)Google Scholar
12. Conrad, U. and Urbassek, H.M. Nucl. Instr. Meth. Phys. Res., B48 399 (1990)Google Scholar
13. Stoneham, A.M. Nucl. Instr. Meth. Phys. Res., B48, 389 (1990)Google Scholar
14. Sigmund, P. Appl. Phys. Letts., 46, 610 (1985)Google Scholar
15. Cuinan, M.W. and Kinney, J.H. J. Nucl. Mater. 103/4 1319 (1981)Google Scholar
16. Weller, R.A. Nucl. Instr. Meth. Phys. Res., 194, 573 (1982)Google Scholar
17. Jackman, R.B., Ebert, H. and Foord, J.S. Surf. Sci., 176, 183 (1986)Google Scholar
18. Jackman, R.B., Price, R.J. and Foord, J.S. Appi. Surf. Sci., 36, 296 (1988)Google Scholar
19. Jackman, R.B., Tyrrell, G.C., French, C.L. and Foord, J.S. To appear in Surf. Sci.Google Scholar
20. Tyrrell, G.C. and Jackman, R.B., To appear in Surf. Sci..Google Scholar
21. Lee, R.E. J. Vac. Sci. Tech., 16 164 (1979)Google Scholar