Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T16:11:36.201Z Has data issue: false hasContentIssue false

Ionically Conducting Glasses with Subambient Glass Transition Temperatures

Published online by Cambridge University Press:  10 February 2011

R. E. Dillon
Affiliation:
Department of Chemistry and Materials Research Center, Northwestern University, Evanston, Illinois, 60208–3113
D. F. Shriver
Affiliation:
Department of Chemistry and Materials Research Center, Northwestern University, Evanston, Illinois, 60208–3113
Get access

Abstract

Cryptands and crown ethers along with the lithium salt, LiCF3SO2N(CH2)3OCH3 (LiMPSA) were employed to produce a new type of amorphous electrolyte. The key to producing an amorphous phase was the mismatch between the cavity size of the macrocycle and the diameter of the cation. The addition of poly(bis-(2(2-methoxyethoxy)ethoxy)phosphazene) (MEEP) to the amorphous complex, LiMPSA/2.2.2 Cryptand, imparts improved electrochemical and viscoelastic properties. Conversely, when poly(sodium-4-styrenesulfonate) (PS4SS) is added to the amorphous complex, LiMPSA/2.2.2 Cryptand, the product crystallizes. The ionic conductivity of the MEEP rubbery electrolyte is a full order of magnitude higher when compared to the analogous PS4SS doped electrolyte (3.8×10−5 S cm−1 (MEEP), 1.7×10−6 S cm1 (PS4SS) both at 30°K).

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ratner, M.A. and Shriver, D.F., Chem. Rev. 88, 109 (1988).10.1021/cr00083a006Google Scholar
2. Julien, C. and Nazri, G., Solid State Batteries: Materials Design and Optimization, edited by Tuller, H.L. (Kluwer Academic Publishers, Boston, 1994), Chapters 3 & 5.Google Scholar
3. MacCallum, J.R. and Vincent, C.A., Polymer Electrolyte Reviews. (Elsevier Science Publishers, London, 1987) Volumes 1 & 2.Google Scholar
4. Angeli, C.A., Liu, C. and Sanchez, E., Nature 362, 137 (1993).Google Scholar
5. Angeli, C.A., Fan, J., Liu, C., Lu, Q. and Sanchez, E., Xu, K., Solid State Ionics 69, 343 (1994).Google Scholar
6. Angell, C.A., Solid State Ionics 9&10, 3 (1983).Google Scholar
7. Angell, C.A., Solid State Ionics 18&19, 72 (1986).Google Scholar
8. Cook, R.E and Robinson, P. J., J. Chem. Research (S), 267 (1982).Google Scholar
9. Angell, C.A., Xu, K., Zhang, S. and Videa, M., Solid State Ionics 86–88, 17 (1996).Google Scholar
10. Watanabe, M., Yamada, S. and Ogata, N., Electrochimica Acta 40 (13–14), 2285 (1995).Google Scholar
11. Watanabe, M. and Mizumura, T., Solid State Ionics 86–88, 353 (1996).Google Scholar
12. Lascaud, S., Perrier, M., Vallèe, A., Besner, S., Prud'homme, J. and Armand, M., Macromolecules 27, 7469 (1994).Google Scholar
13. Allcock, H.R., Austin, P.E, Neeman, T.X, Sisko, J.T., Blonsky, P.M. and Shriver, D.F., Macromolecules 19, 1508 (1986).Google Scholar
14. Izatt, R.M, Bradshaw, J.S., Nielsen, S.A., Lamb, J.D. and Christensen, J.J., Chem. Rev. 85, 271 (1985).10.1021/cr00068a003Google Scholar
15. Lehn, J.M., Sauvage, J.P., J. Am. Chem. Soc. 97 (23), 6700 (1975).Google Scholar
16. Smetana, A. J. and Popov, A.I., J. Soln. Chem. 9 (3), 183 (1980).Google Scholar
17. Bradshaw, J.S, Izatt, R.M., Bordunov, A.V., Zhu, C.Y., Hathaway, J.K., Comprehensive Supramolecular Chemistry, edited by Gokel, G.W. (Elseveir Science Publishers, New York, 1996), Vol. 1, pp. 35;Google Scholar
Dietrich, B., Comprehensive Supramolecular Chemistry, edited by Gokel, G.W. (Elseveir Science Publishers, New York, 1996), Vol. 1, pp. 153.Google Scholar
18. Vogel, H., Phys. Z. 22, 645 (1921).Google Scholar
19. Tamman, G. and Heese, W.Z., Anorg. Alig. Chem. 254, 165 (1926).Google Scholar
20. Fulcher, G. S., J. Am. Ceram. Soc. 8, 339 (1925).Google Scholar