No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Patterning of magnetic multilayer structures of the type used for MRAMs (e.g. NiFeCo/CoFe/Cu/CoFe/NiFeCo) is generally performed with ion milling, but this can degrade the coercivity of small (micron-size) MRAM elements and lead to sidewall redeposition. In high ion density reactive plasmas (Cl2/Ar) it is possible to produce ion-enhanced desorption of otherwise involatile halogenated reaction products, and achieve practical etch rates (∼600 Å/min) for the multilayers. However, removal of the chlorinated etch products from the feature sidewalls is critically important to avoid corrosion. We have used de-ionized water rinsing or in-situ exposure to H2, O2 or SF6 plasmas for removal of these etch residues. Some slight degradation in magnetization was observed in O2 plasma treated structures, but the other cleaning procedures produced no change in magnetic properties and excellent long-term stability. UV illumination of the sample surface during etching is also found to enhance etch rates, as has been reported previously for room temperature etching of Cu.[1]