Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T11:30:14.178Z Has data issue: false hasContentIssue false

Ion induced formation of Silicon nitride substrate and GaN overlayer growth at room temperature on Si (111) surface

Published online by Cambridge University Press:  31 January 2011

Praveen Kumar
Affiliation:
[email protected]@gmail.com, National Physical Laboratory, Surface Physics and Nanostructures Group, Delhi, India
Mahesh Kumar
Affiliation:
[email protected], National Physical Laboratory, Surface Physics and Nanostructures Group, Delhi, India
Govind Gupta
Affiliation:
[email protected], National Physical Laboratory, Surface Physics and Nanostructures Group, Delhi, New Delhi, India
Bodh R. Mehta
Affiliation:
[email protected], Indian Institute of Technology Delhi, Department of Physics, Delhi, India
Sonanda M. Shivaprasad
Affiliation:
[email protected], Jawahar Lal Nehru Center for Advanced Sientific Research, CPMU & ICMS, Karnatka, India
Get access

Abstract

GaN and related nitride semiconductors have attracted great attention in view of their wide applications in photonics and high temperature & high power electronic devices. Among other issues, reduction of defect densities by forming these interfaces at lower temperature and on novel substrates has been the motivation for several researchers. In the present study ion-induced conversion of Si (111) surface into silicon nitride at room temperature is optimized and used as substrate for the growth of Ga films. These Ga films are again nitrided by optimal N+ ion bombardment. Experiments have been performed in-situ in an ultra high vacuum chamber equipped with a Ga source and X-ray photoelectron spectrometer (XPS) at base pressure of 2×10-10 torr. The energy dependence of the nitridation is carefully performed at constant flux. The results clearly demonstrate the Si-N bond formation after a energy of 2 keV and the formation of GaN layer after 800eV of ion bombardment on Si (111) 7×7 surface and Ga adsorbed silicon nitride surface, respectively. The FWHM and chemical shifts in the core-level spectra of Si(2p), Ga(2p) and N(1s) have been analyzed to probe the interface reactions. The results demonstrate a possible novel and low temperature approach towards the integration of III-nitride & silicon technologies, since silicon nitride bonds can act as barriers to dislocation propagation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nakamura, , Science 281, 956 (1998).Google Scholar
2 Karlicek, R. F. Jr, Schurman, M., Tran, C., Salagaj, T., Li, Y. and Stall, R. A., III-Vs Review 10, 20 (1997).Google Scholar
3 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y. and Kiyoku, H., Appl. Phys. Lett. 69, 4056 (1996).Google Scholar
4 Sun, Q., Cho, Y. S., Kong, B. H., Cho, H. K., Ko, T. S., Yerino, C. D., Lee, I. and Han, J., Cryst, J.. Growth 311, 2948 (2009).Google Scholar
5 Xue, Q., Xue, Q. K., Bakhtizin, R. Z., Hasegawa, Y., Tsong, I. S. T., and Sakurai, T. and Ohno, T., Phy. Rev B 59, 12604 (1999).Google Scholar
6 Huang, S. C., Wang, H. Y., HSU, C. J., Gong, J. R., Chiang, C., Tu, S. L. and Chang, H., J. Mater. Sci. Lett. 17, 1281 (1998).Google Scholar
7 Armitage, R., Yang, Q., Feick, H., Gebauer, J., Weber, E. R., Shinkai, S. and Sasaki, K., Appl. Phys. Lett. 81, 1450 (2002).Google Scholar
8 Louarn, A. Le., Vezian, S., Semond, F. and Massies, J., J. Cryst. Growth 311, 3278 (2009).Google Scholar
9 Huang, T S, Joyce, T B, Murray, R T, Papworth, A J and Chalker, P R, J. Phys. D: Appl. Phys. 35, 620 (2002).Google Scholar
10 Kryllouk, O., Anderson, T., Kim, K. C., US Patent 7001791 (2006) B2.Google Scholar
11 Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
12 Ito, K., Uchida, Y., Lee, S., Tsukimoto, S., Ikemoto, Y., Hirata, K., Shibata, N., and Murakami, M., Mater. Res. Soc. Symp. Proc. 916, 0916–DD04 (2006).Google Scholar
13 Kuo, C. H., Chang, S. J., Su, Y. K., Wang, C. K., Sheu, J. K., Wen, T. C., Lai, W. C., Tsai, J. M. and Lin, C. C., Solid-State Electronics 47, 2019 (2003).Google Scholar
14 Pan, J. S., Wee, A. T. S., Huan, C. H. A., Tan, H. S. and Tan, K. L., Vacuum 47, 1495 (1996).Google Scholar
15 Kumar, P., Kumar, M., Govind, , Mehta, B.R., Shivaprasad, S.M., App. Surf. Sci. 256, (2009) 517.Google Scholar
16 Kumar, Praveen, Bhattacharya, S., , Govind, Mehta, B. R., and Shivaprasad, S. M., J. Nanosci. Nanotechnol. 9, 5659 (2009).Google Scholar
17 Kumar, P., Nair, L., Bera, S., Mehta, B. R., Shivaprasad, S.M., App. Surf. Sci. 255, 6802 (2009).Google Scholar
18 Kumar, P., Kumar, M., Mehta, B.R., Shivaprasad, S.M., Appl. Surf. Sci. 256, 480 (2009).Google Scholar
19 Enta, Y., Suzuki, S., Kono, S., Sakamoto, T., Phys. Rev. B 39, 56 (1989).Google Scholar
20 Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., Muilenberg, G.E., Handbook of Xray Photoelectron Spectroscopy, Published by: PerkinElmer Corp., 1979.Google Scholar