No CrossRef data available.
Published online by Cambridge University Press: 22 February 2011
Laser modulated thermoreflectivity, also called thermal wave technology, has been used in recent years to monitor ion implantation dose by monitoring the damage due to implantation. The thermal properties which are affected by lattice perturbations and other crystal imperfections are tracked by this technique. A gauge capability study was performed on the Thermawave TP300 for monitoring ion implantation of GaAs wafers. The results are presented. In order to determine the sensitivity of the technique to changes in dose, a matrix of GaAs and Si wafers was measured. During this study a downward trend was observed in the repeatability of our results. It is shown that damage to a sample during implantation will relax to a certain degree at room temperature. This damage relaxation can take up to 80 hours at room temperature and can be observed using thermal waves. It is shown that “hot wafer decay” follows a logarithmic decay which is indicative of a diffusion process. At 180°C the decay lasts less than 1 minute which indicates that the defects causing this phenomenon have a low activation energy.