Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T23:39:39.525Z Has data issue: false hasContentIssue false

Ion Implantation Damage in Aluminum Studied by Quantitative Electron Chanelling and Tem.

Published online by Cambridge University Press:  26 February 2011

Ronald G. Vardiman*
Affiliation:
U. S. Naval Research Laboratory, 4555 Overlook Ave., S.W., Washington, DC 20375-5000
Get access

Abstract

Electron chanelling linewidth changes in aluminum have been measured as a function of dose for boron and aluminum ion implantation. Weak beam TEM observations assist interpretation of the results by showing the nature and degree of the damage. For self implantation, a linear relationship between dose, linewidth, and dislocation density has been found up to 3×1017ions/cm2. For boron implantation, a new point-like defect appears at the higher boron concentrations, giving a much slower increase of chanelling linewidth with dose above l×1016 ions/cm2. Boron interaction with the damage stabilizes higher damage acumilations than for sel f-i mpl antati on.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vardiman, R. G., Nucl. Inst. Meth. B 16, 143 (1986).Google Scholar
2. Farrow, R. C. and Joy, D. C. in Scanning Electron Microscopy/1981 (SEM Inc., Chicago 1981) p. 397.Google Scholar
3. Skolnik-Legg, H. F., Cathcart, J. M. and Stevenson, J. R. in Ion Implantation into Metals, eds. Ashworth, V., Grant, W. A. and Proctor, R. P. M. (Pergamon, London, 1982) p. 328.-Google Scholar
4. Henrikson, L., Johansen, A., Koch, J., Anderson, H. H., Leffers, T. and Cotterill, R. M. J., Con. J. Phys. 46, 641 (1968).Google Scholar
5. Johnson, E. and Ytterhus, J. A., Phil. Mag. 28, 489 (1973).Google Scholar
6. Beevers, C. J. and Nelson, R.S., Phil. Mag. 8, 1189 (1963).Google Scholar
7. Norris, D. I. R., Phil. Mag. 19, 527 (1969).Google Scholar
8. Giraldez, C. Gomez, Hertel, B., Ruhle, M. and Wilkens, M. in Applications of Ion Beams to Metals, eds. Picraux, S. R., EerNisse, E. P. and Vook, T. L., (Plenum Press, New York, 1974) p. 469.Google Scholar
9. Foti, G., Picraux, S. T., Campisano, S. Y., Rimini, E. and Kant, R. A. in Ion Implantation in Semiconductors, eds. Chernow, F., Borders, I. A., and Brice, D. K. (Plenum Press, New York, 1977) p. 247.Google Scholar
10. Picraux, S. T., Rimini, E., Foti, G. and Campisano, S. U., Phys. Rev. B 18, 2078 (1978).Google Scholar
11. Picraux, S. T., Follstaedt, D. M., Baeri, P., Campisano, S. U., Foti, G. and Rimini, E., Rad. Eff. 49, 75 (1980).Google Scholar
12. Manning, I. and Mueller, G. R., Comput. Phys. Comm. 7, 85 (1974).Google Scholar
13. Shoeck, G., J. Appl. Phys. 33, 1745 (1962).Google Scholar