Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T05:31:02.204Z Has data issue: false hasContentIssue false

Ion Implantation and 1 MeV Electron Irradiation of 4H-SiC---Comparison Studies

Published online by Cambridge University Press:  15 March 2011

A. O. Evwaraye
Affiliation:
Department of Physics, University of Dayton, 300 College Park, Dayton, Ohio 45469-2314
S. R. Smith
Affiliation:
University of Dayton Research Institute, 300 College Park, Dayton, Ohio 45469-0178
W. C. Mitchel
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate AFRL/MLPS Wright-Patterson Air Force Base, OH 45433-7707
G. C. Farlow
Affiliation:
Department of Physics, Wright State University, 3640 Col. Glenn Hwy, Dayton, OH 45435
M. A. Capano
Affiliation:
Department of Electrical and Computer Engineering, Purdue University, West Lafayette IN
Get access

Abstract

Argon ions (Ar+) were implanted into n-type 4H-SiC epitaxial layers at 600 °C. The energy of the ions was 160 keV and at a dose of 2 × 1016 cm−2. After post-implantation annealing at 1600 °C, Schottky diodes were fabricated on the ion implanted samples. Bulk n-type 4H-SiC samples were irradiated at room temperature with 1 MeV electrons at doses of 1 × 1016 to 5.1 × 1017 el/cm2. The current density of the beam was 0.91 μA/cm2. Deep Level Transient Spectroscopy (DLTS) was used to characterize the induced defects. DLTS studies of Ar+ implanted samples showed six defect levels at EC – 0.18 eV, EC – 0.23eV, EC – 0.31eV, EC – 0.38 eV, EC – 0.72 eV, and EC – 0.81 eV. Z1/Z2 defect is the dominant defect in the electron irradiated sample and anneals out completely after 10 minutes at 1000 °C. However, Z1/Z2 defect in Ar+ implanted samples was stable up to 1600 °C. It is suggested that the annealing behavior of Z1/Z2 depends on the source of its formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Christel, L. A. and Gibson, J. F., J. Appl. Phys. 52, 5050 (1981)Google Scholar
[2] Alok, D., Baliga, B. J., and McLarty, P. K., IEEE Electron Device Letters 15, 394 (1994)Google Scholar
[3] Doyle, J. P., Aboelfotoh, M. O., Linnarsson, M. K., Svensson, B. G., Schoner, A., Nordell, N., Harris, C., Lindstrom, J. T., Janzen, E. and Hemmingsson, C., Mater. Res. Soc. Symp. Proc. 423, 519(1996).Google Scholar
[4] Hemmingsson, C., Son, N. T., Ellison, A., Zhang, J., and Janzen, E., Phys. Rev. B59, 7768(1999).Google Scholar
[5] Doyle, J. P., Linnarsson, M. K., Pellegrino, P., Keskitalo, N., and Svensson, B. G., Schoner, A., Nordell, N., and Lindstrom, J. L., J.Appl. Phys. 84, 1354(1998)Google Scholar
[6] Evwaraye, A. O., Smith, S. R., and Mitchel, W. C., J. Appl. Phys. 79, 10(1996)Google Scholar
[7] Troffer, T., Schard, M., Frank, T., Itoh, H., Pensl, G., Heindl, J., Strunk, H. P., and Maier, M., phys. stat. sol(a) 162, 277(1997).Google Scholar
[8] Dalibor, T., Pensl, G., Matsunami, H., kimoto, T., Choyke, W. J., Schoner, A., and Nordell, N., phys. sat. sol(a) 162, 199(1997).Google Scholar
[9] C.Hemmingsson, Son, N. T., Kordina, O., Bergman, J. P., Janzen, E., Lindstrom, J. L., Savage, S., and Nordell, N., J. Appl. Phys. 81, 6155(1997).Google Scholar
[10] Kawasuso, A., Redmann, F., Krause-Rehberg, R., Weidner, M., Frank, T., Pensl, G., Sperr, P., Triftshauser, W. and Itoh, H., Appl. Phys. Lett. 79, 3950(2001).Google Scholar
[11] Hellen, A., Aberg, D., Pellegrino, P., Henry, A., and Svensson, B. G., Mater. Sci. Eng. B61–62, 378(1999).Google Scholar
[12] Aberg, D., Hallen, A. and Svensson, B. G., Physica B273, 672(1999).Google Scholar