Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:24:44.476Z Has data issue: false hasContentIssue false

Ion Beam Mixing in Insulator Substrates

Published online by Cambridge University Press:  21 February 2011

Carl J. McHargue*
Affiliation:
Center for Materials Processing, University of Tennessee, Knoxville, TN 37996–2350, [email protected]
Get access

Abstract

Ion beam mixing involving insulator substrates is reviewed with an emphasis on thermochemical considerations. Studies generally have employed the bi-layer geometry for metal/insulator or oxide/oxide combinations. There is little evidence for long-range material transport in crystalline substrates.

Recoil mixing has been detected for both metal and oxide films deposited on sapphire and irradiated at room temperature. Agglomeration of non-wetting metal films suggests that surface diffusion is induced by the ion beam. Evidence has been reported for the occurrence of chemical reactions and perhaps thermally-induced migration in amorphous aluminum oxide substrates.

Ballistic mixing is also indicated for metal films on SiC, Si3N4 and SiO2. Ion beam-induced reactions have been observed at the interfaces for systems in which the enthalpy of reaction is favorable. Chemical effects in the cascade mixing regime may determine the phases present in the mixed zone after the composition changes caused by ballistic processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pells, G. and Stathapoulos, A., Radiat. Eff. 74, p 181 (1983).Google Scholar
2 Agnew, P., Phil. Mag. A65, p 355 (1992).Google Scholar
3 Parkin, D. M. and Coulter, C. A., J. Nucl. Mater. 101, p 261 (1981).Google Scholar
4 D. Evans, B., Cornas, J. and Malmberg, P. R., Phys. Rev. B6, p 2453 (1972).Google Scholar
5 Perez,M. Treilleux, A., Fritsch, L. and Marest, G., Radiat. Eff. 64, p 199 (1982).Google Scholar
6 Perez, A., Marest, G., Sawicka, B., Sawicki, J. and Tyliszczak, T., Phys. Rev. B28, p 1227 (1983).Google Scholar
7 J. McHargue, C., Sklad, P. S., White, C. W., Farlow, G. C., Perez, A. and Marest, G., J. Mater. Res. 6, p 2145 (1991).Google Scholar
8 McHargue, C. J., Ren, S. X., Allard, L. F., Chen, Y., Hunn, J., Williams, R. K., Perez, A. and Marest, G., Nanostructured Mater. 6, p 513 (1995).Google Scholar
9 McHargue, C. J., Farlow, G. C., Begun, G. M., Williams, J. M., White, C. W., Appleton, B. R., Sklad, P. S. and Angelini, P., Nucl. Instr. Methods in Phys. Res. B16, p 212 (1986).Google Scholar
10 Spitznagel, J. A., Wood, S., Chovke, W. J., Doyle, N. J., Bradshaw, J. and Fishman, S. G., Nucl. Instr. Methods in Phys. Res. B16, p 237 (1986).Google Scholar
11 Lindhard, J., Scharff, M., and Schiott, H., Mat. Fys. Medd. Danske Videnskab. Selskab, 33(10), (1963).Google Scholar
12 Winterbon, K., Sigmund, P., and Sanders, J., Mat. Fys. Medd. Danske Videnskab. Selskab, 37(14), (1970).Google Scholar
13 Sigmund, P., Rev. Phys. 17, p 823 (1972).Google Scholar
14 Haff, P. K. and Switkowski, Z. E., J. Appl. Phys. 49, p 3383 (1977).Google Scholar
15 Matteson, S., Appl. Phys. Lett. 39, p 288 (1981).Google Scholar
16 Matteson, S., Roth, J., and Nicloet, M-A., Radiat. Effects 42, p 217 (1979).Google Scholar
17 Myers, S. M., Nucl. Instr. Meth. 168, p 265 (1980).Google Scholar
18 Mayer, J. W., Tsaur, B. Y., Lau, S. S., and Hung, L. S., Nucl. Instr. Meth. 182/183, p 1 (1981).Google Scholar
19 Wang, Z. L., Nucl. Instr. Meth. Phys. Res. B2, p 748 (1984).Google Scholar
20 Lau, S. S.., Liu, B. X., and Nicolet, M-A., Nucl. Instr. Meth. Phys. Res. 209/210, p 125 (1982).Google Scholar
21 White, C. W., Farlow, G., Narayan, J., Clark, G., and Baglin, J.E.E., Mater. Lett. 2, p 367 (1984).Google Scholar
22 van Rossum, M., Shreter, U., Johnson, W. L., and Nicolet, M-A., Mater. Res. Soc. Symp. Proc. 27, p127 (1984).Google Scholar
23 Wang, Z. L., Westendorp, J., and Saris, F. W., Nucl. Instr. Meth. Phys. Res. 209/210, p115 (1982).Google Scholar
24 van Rossum, M., Cheng, Y-T., Nicolet, M-A., and Johnson, W. L., Appl. Phys. Lett. 46, p 610 (1985).Google Scholar
25 Johnson, W. L., Cheng, Y-T., van Rossum, M., and Nicolet, M-A., Nucl. Instr. Meth. Phys. Res. B7/8, p 657 (1985).Google Scholar
26 Miotello, A. and Kelly, R., Surface Sci. 314, p 275 (1994).Google Scholar
27 Kelly, R. and Miotello, A., Appl. Phys. Lett. 64, p 2649 (1994).Google Scholar
28 Miotello, A. and Kelly, R., Surface Sei. 329, p 289 (1995).Google Scholar
29 Børgesen, P., Lilienfeld, D. A. and Johnson, H. H., J. Appl. Phys. 66, p 513 (1989).Google Scholar
30 Børgesen, P., Lilienfeld, D. A. and Johnson, H. H., Appl. Phys. Lett. 57, p 1407 (1990).Google Scholar
31 Joslin, D. L., Ph. D. dissertation, University of Tennessee, Knoxville, TN (1993).Google Scholar
32 Banwell, T., Liu, B. X., Golecki, I., and Nicolet, M-A., Nucl. Instr. Meth. Phys. Res. 209/210, p 125 (1983).Google Scholar
33 Farlow, G. C., Appleton, B. R., Boatner, L. A., and McHargue, C. J., Mater. Res. Soc. Symp. Proc. 45, p 137 (1985).Google Scholar
34 Appleton, B. R., Naramoto, H., White, C. W., Holland, O. W., McHargue, C. J., Farlow, G. C., Narayan, J., and Williams, J. M., Nucl. Instr. Meth. Phys. Res. Bl, p 167 (1984).Google Scholar
35 Fathy, D., Holland, O. W., Narayan, J., and Appleton, B. R., Nucl. Instr. Meth. Phys. Res. B7/8, p 571 (1985).Google Scholar
36 Romana, L., Thevenard, P., Brenier, R., Fuchs, G., and Massouras, G., Nucl. Instr. Meth. Phys. Res. B32, p 96 (1988).Google Scholar
37 Abonneau, E., Fuchs, G., Treilleux, M., and Perez, A., Nucl. Instr. Meth. Phys. Res. B46, p 111 (1990).Google Scholar
38 Fuchs, G., Abonneau, E., Treilleux, M., and Perez, A., Mater. Sci. Eng. A109, p 83 (1989).Google Scholar
39 Baglin, J. E. E. in Ion Beam Modification of Insulators, eds. Mazzoldi, P. and Arnold, G. W. (Elsevier, Amsterdam, 1987) p 585.Google Scholar
40 J. E. Pawel, , M. S. thesis, University of Tennessee, Knoxville, TN (1987).Google Scholar
41 McHargue, C. J., Joslin, D. L., White, C. W., da Silva, M. F., Alves, E. and Soares, J. C., Surface and Coatings Tech. (in press).Google Scholar
42 Perez, A., Abonneau, E., Fuchs, G., Treilleux, M., McHargue, C. J. and Joslin, D. L., Nucl. Instrum Meth. in Phys. Res. B65, p 129 (1992).Google Scholar
43 Pawel, J. E., McHargue, C. J., Romana, L., and Wert, J. J., J. Surfaces and Coatings 51, p 129 (1992).Google Scholar
44 Romana, L., Fuchs, G., Brunei, M., Massouras, G., Canut, B., Brenier, R., Ramos, S. M. M., and Thevenard, P., Nucl. Instr. Meth. Phys. Res. B59/60, p 567 (1991).Google Scholar
45 Doolittle, L. R., Nucl. Instr. Meth. Phys. Res. B15, p 227 (1986).Google Scholar
46 Ziegler, J. F., Cuomo, G., and Biersack, J. P., TRIM-88: The Stopping and Range of Ions in Matter.Google Scholar
47 Banwell, T., Nicolet, M-A, Sands, T. and Grunthaner, P. J., Appl. Phys. Lett 50, p 571 (1987)Google Scholar
48 Joslin, D. L., McHargue, C. J. and White, C. W., Nucl. Instrum. Meth. Phys. Res. B91, p 566 (1994).Google Scholar
49 Cooper, E. A. and Nastasi, M., Nucl. Instrum. Meth. Phys. Res. B91, p 558 (1994).Google Scholar
50 Narayan, J., Fathy, D., Holland, O. W., Appleton, B. R., Davis, R. F. and Becher, P. F., J. Appl. Phys. 56, p 1577 (1984).Google Scholar
51 Bhattacharya, R. S., Rai, A. K. and Pronko, P., J. Mater. Sci. 2, p 211 (1987).Google Scholar
52 Boise, W., Peteves, S. D. Vredenberg, A. M. and Saris, F., Nucl. Instrum. Meth. Phys. Res. B64, p 138 (1992).Google Scholar