Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T08:05:03.355Z Has data issue: false hasContentIssue false

Ion Beam Irradiation of Lanthanum Compounds in the Series La2O3-TiO2

Published online by Cambridge University Press:  01 February 2011

Karl Whittle
Affiliation:
[email protected], ANSTO, IME, New Illawara Road, Sydney, New South Wales, 2234, Australia
Mark Blackford
Affiliation:
[email protected], ANSTO, Institute of Materials Engineering, PMB1, Sydney, New South Wales, 2234, Australia
Robert Aughterson
Affiliation:
[email protected], ANSTO (Australian Nuclear Science and Technology Organisation), Institute of Materials Engineering, New Illawarra Road, Lucas Heights, NSW, Australia, 2234, Lucas Heights, New South Wales, 2234, Australia
Katherine L Smith
Affiliation:
[email protected], ANSTO, Institute of Materials Engineering, Sydney, New South Wales, Australia
Gregory R Lumpkin
Affiliation:
[email protected], ANSTO, Institute of Materials Engineering, Sydney, New South Wales, Australia
Nestor J Zaluzec
Affiliation:
[email protected], Argonne National Laboratory, Electron Microscopy Center, Chicago, Illinois, United States
Get access

Abstract

Thin crystals of La2O3, La2/3TiO3, La2TiO5, and La2Ti2O7 have been irradiated in situ using 1 MeV Kr2+ ions in the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), at the Argonne National Laboratory (ANL). We observed that La2O3 remained crystalline to a fluence greater than 3.1 × 1016 ions cm-2 at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisation (Tc) of 840 K for La2Ti2O7, 865 K for La2/3TiO3, and 1027 K for La2TiO5. The Tc values observed in this study, together with previous data for TiO2, are discussed with reference to the phase diagrams for La2O3-TiO2 systems and the different local environments within the crystal structures. Results suggest an observable inverse correlation between Tc and melting temperature (Tm) in the two systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Weber, W. J., Ewing, R. C., Catlow, C. R. A., Rubia, T. D. de la, Hobbs, L. W., Kinoshita, C., Matzke, H., Motta, A. T., Nastasi, M., Salje, E. K. H., Vance, E. R. and Zinkle, S. J., Journal of Materials Research Research, 13, 14341484 (1998)Google Scholar
2 Ewing, R. C., Weber, W. J. and Lian, J., Journal of Applied Physics Physics, 95, 59495972 (2004)Google Scholar
3 Lumpkin, G. R., Pruneda, J. M., Rios, S., Smith, K. L., Trachenko, K., Whittle, K. R. and Zaluzec, N. J., Journal Of Solid State Chemistry Chemistry, 180, 15121518 (2007)Google Scholar
4 Lumpkin, G. R., Smith, K. L., Blackford, M. G., Thomas, B. S., Whittle, K. R., Marks, N. A. and Zaluzec, N. J., Physical Review B, 77 212401 (2008)Google Scholar
5 Marsella, L. and Fiorentini, V., Physical Review B, 69, 4 (2004)Google Scholar
6 Zhang, Z., Lumpkin, G. R., Howard, C. J., Knight, K. S., Whittle, K. R. and Osaka, K., Journal Of Solid State Chemistry Chemistry, 180, 10831092 (2007)Google Scholar
7 Ishizawa, N., Marumo, F., Iwai, S., Kimura, M. and Kawamura, T., Acta Crystallographica Section B B-Structural Science Science, 38, 368372 (1982)Google Scholar
8 Schmalle, H. W., Williams, T., Reller, A., Linden, A. and Bednorz, J. G., Acta Crystallographica Section B B-Structural Science Science, 49, 235244 (1993)Google Scholar
9 Allen, C. W., Funk, L. L. and Ryan, E. A., in Ion-Solid Interactions for Materials Modification and Processing, edited by Poker, D. B., Ila, D., Cheng, Y. T., Harriott, L. R. , and Sigmon, T. W., (Mater. Res. Soc. Symp. Proc., 396) 641646 Google Scholar
10 Wang, S. X., Wang, L. M. and Ewing, R. C., in Atomistic Mechanisms in Beam Synthesis and Irradiation of Materials Materials, edited by Barbour, J. C., Roorda, S. and Ila, D., (Mater. Res., Soc. Symp. Proc., 504) 165 Google Scholar
11 Weber, W. J., Nuclear Instruments – 167, 98106 (2000)Google Scholar
12 Tang, M., Valdez, J. A. Val, Lu, P., Gosnell, G. E., Wetteland, C. J. and Sickafus, K. E., Journal Of Nuclear Materials Materials, 328, 7176 (2004)Google Scholar
13 Pells, G. P., Journal of the American Ceramic Society Society, 77, 368377 (1994)Google Scholar
14 Devanathan, R., Mitchell, J. N., Sickafus, K. E., Weber, W. J. and Nastasi, M., Materials Science and Engineering: A, 253, 131134 (1998)Google Scholar
15 Ziegler, J. F., Nuclear Instruments20, 10271036 (2004)Google Scholar
16 Naguib, H. M. and Kelly, R., Radiation Effects Effects, 25, 112 (1975)Google Scholar
17 Shannon, R. D., Acta Crystallographica Section A, A32, 751767 (1976)Google Scholar
18 Whittle, K. R., Lumpkin, G. R., Smith, K. L., Blackford, M. G., Zaluzec, N. J. and Harvey, E. J., in Scientific Basis For Nuclear Waste Management XXX, edited by Dunn, D. S., Poinssot, C. and Begg, B., (Mater. Res. Soc. Symp. Proc., 985, 2007), 0985–NN09 NN09Google Scholar