Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T03:59:42.379Z Has data issue: false hasContentIssue false

Investigations of the Bonding Changes Associated with Grain Boundary Embrittlement

Published online by Cambridge University Press:  10 February 2011

V. J. Keast
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem PA, 18015
J. Bruley
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem PA, 18015
D. B. Williams
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem PA, 18015
Get access

Abstract

The embrittlement of materials through the segregation of impurities to the grain boundaries is a common and industrially important problem. Despite considerable investigation, the mechanism by which the impurity elements cause embrittlement is not well understood. A change in the electron energy loss near edge structure (ELNES) has been observed at Cu grain boundaries containing Bi. This result provides experimental evidence that a change in the electronic structure at the grain boundary is responsible for embritdement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hondros, E. D. and Seah, M. P., Met. Trans. 8A, 1363 (1977).Google Scholar
2. Stein, D. F. and Heldt, L. A., in Interfacial Segregation, edited by Johnson, W. C. and Blakely, J. M. (American Society for Metals, Ohio, 1979), p. 239260.Google Scholar
3. Bennison, S. J. and Harmer, M. P., Ceramic Transactions 7, 13 (1990).Google Scholar
4. Pugh, S. F., An Introduction to Grain Boundary Fracture in Metals. (The Institute of Metals, Brookfield, 1991), p. 100126.Google Scholar
5. Hampe, W., Berg-Hütten, Z. u. Salinen-Wesen 22, 93 (1874).Google Scholar
6. Voce, E. and Hallowes, A. P. C., J. Inst. Metals 73, 323 (1947).Google Scholar
7. McLean, D., J. Inst. Metals 73, 791 (1947).Google Scholar
8. Joshi, A. and Stein, D. F., J. Inst. Metals 99, 178 (1971).Google Scholar
9. Powell, B. D. and Mykura, H., Acta Metall. 21, 1151 (1973).Google Scholar
10. Powell, B. D. and Woodruff, D. P., Phil. Mag. 34, 169 (1976).Google Scholar
11. Michael, J. R. and Williams, D. B., Met. Trans. 15A, 99 (1984).Google Scholar
12. Hondros, E. D. and Seah, M. P., Int. Metals Rev. 222, 262 (1977).Google Scholar
13. Baumann, S. F. and Williams, D. B., J. Microsc. 123, 299 (1981).Google Scholar
14. Peng, B., Wu, X., Zhou, F. and Tang, Q., J. Appl. Phys. 71, 1229 (1992).Google Scholar
15. Vitek, V. and Wang, G. J., Surface Science 144, 110 (1984).Google Scholar
16. Wu, X. J., Li, G. H., Cai, M., Qiu, Q. and Tang, Q. H., Mechanical Properties/Materials Design (1991).Google Scholar
17. Miura, H., Yoshida, T., Sakai, T., Kato, M. and Mori, T., J. Japan Inst. Metals 57, 479 (1993).Google Scholar
18. Roy, A., Erb, U. and Gleiter, H., Acta Metall. 30, 1847 (1982).Google Scholar
19. Russell, J. D. and Winter, A. T., Scripta Metall. 19, 575 (1985).Google Scholar
20. Wang, J. and Anderson, P. M., Acta Metall. Mater. 39, 779 (1991).Google Scholar
21. Donald, A. M. and Brown, L. M., Acta Metall. 27, 59 (1979).Google Scholar
22. Ference, T. G. and Ballufi, R. W., Scripta Metall. 22, 1929 (1988).Google Scholar
23. Blum, B., Menyhard, M., Luzzi, D. E. and McMahon, J. C. J., Scripta Met. et Mat. 24, 2169 (1990).Google Scholar
24. Luzzi, D. E., Phil. Mag. Lett. 63, 281 (1991).Google Scholar
25. Egerton, R. F., Electron Energy Loss Spectroscopy in the Electron Microscope, (Plenum Press, New York and London, 1996), p. 227237.Google Scholar
26. Brydson, R., Sauer, H. and Engel, W., in Transmission Electron Microscopy in Materials Science, edited by Disko, M. M., Ahn, C. C. and Fultz, B. (The Minerals, Metals and Materials Society, 1993), p. 131154.Google Scholar
27. Rez, P., Weng, X. and Ma, H., Microsc. Microanal. Microstruct. 2, 143 (1991).Google Scholar
28. Goldstein, J. I., Williams, D. B. and Cliff, G., in Principles of Analytical Electron Microscopy, edited by Joy, D. C., Romig, A. D. and Goldstein, J. I. (Plenum Press, New York and London, 1986), p. 155.Google Scholar
29. Fano, U. and Cooper, J. W., Mod. Phys. 40, 441 (1968).Google Scholar
30. Müllejans, H. and Bruley, J., Ultramicroscopy 53, 351 (1994).Google Scholar
31. Briant, C. L. and Messmer, R. P., Acta metall. 30, 1811 (1982).Google Scholar
32. Wu, R., Freeman, A. J. and Olson, G. B., J. Mater. Res. 7, 2403 (1992).Google Scholar