Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T04:38:43.504Z Has data issue: false hasContentIssue false

Investigations of Tail and Defect States in a-Si0.6Ge0.4:H Alloys by PDS and ESR - Implications for the Interaction of Weak and Dangling Bonds

Published online by Cambridge University Press:  15 February 2011

Tilo P. Drüsedau
Affiliation:
Institut für Experimentelle Physik / Abt. Festkörperphysik der Otto-von-Guericke-Universität PF 4120, D - 39016 Magdeburg, Germany
Andreas N. Panckow
Affiliation:
Institut für Experimentelle Physik / Abt. Festkörperphysik der Otto-von-Guericke-Universität PF 4120, D - 39016 Magdeburg, Germany
Bernd Schröder
Affiliation:
Fachbereich Physik und Forschungsschwerpunkt Materialwissenschaften der Universität, Kaiserslautern, PF 3049, D - 67663 Kaiserslautern, Germany
Get access

Abstract

Investigations on the gap state density were performed on a variety of samples of hydrogenated amorphous silicon germanium alloys (Ge fraction around 40 at%) containing different amounts of hydrogen. From subgap absorption measurements the values of the “integrated excess absorption” and the “defect absorption” were determined. Using a calibration constant, which is well established for the determination of the defect density from the integrated excess absorption of a-Si:H and a-Ge:H, it was found that the defect density is underestimated by nearly one order of magnitude. The underlying mechanisms for this discrepancy are discussed. The calibration constants for the present alloys are determined to 8.3×1016 eV−1 cnr2 and 1.7×1016 cm−2 for the excess and defect absorption, respectively. The defect density of the films was found to depend on the Urbach energy according to the law derived from Stutzmann's dangling bond - weak bond conversion model for a-Si:H. However, the model parameters - the density of states at the onset of the exponential tails N*=27×1020 eV−1 cm−3 and the position of the demarcation energy Edb-E*=0.1 eV are considerably smaller than in a-Si:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jackson, W. B. and Amer, N. M., Phys. Rev. B 25, 5569 (1982).Google Scholar
2. Wyrsch, N., Finger, F., MacMahon, T. J. and Vanecek, M., J. Non-Cryst. Solids 137&138, 347 (1991).Google Scholar
3. Pierz, K., Fuhs, H. and Mell, H., Phil. Mag. B 63, 123 (1991).Google Scholar
4. Brandt, M., Asano, A. and Stutzmann, M. in Amorphous Silicon Technology, edited by Schiff, E. A., Thompson, M. J., Madan, A., Tanaka, K. and LeComber, P. G. (Mat. Res. Soc. Symp. Proc. 297, Pittsburgh, PA, 1993) pp. 201.Google Scholar
5. Skumanich, A. and Amer, N. M., J. Non-Cryst. Solids 59&60, 249 (1983).Google Scholar
6. Godet, C., Chu, V., Equer, B., Bouizem, Y., Chahed, L., El Zawawi, I., Theye, M. L., Basrour, S., Bruyere, J. C. and Stoquert, J. P., Mat. Res. Soc. Symp. Proc. 192, 163 (1990).Google Scholar
7. Graeff, C. F. O., Stutzmann, M. and Eberhardt, K., Phil. Mag. B 69, 387 (1994).Google Scholar
8. Curtins, H. and Favre, M., in Amorphous silicon and related materials, Advances in Disordered Semiconductors 1A, edited by Fritsche, H. (World Scientific, Singapore, 1988) pp. 329.Google Scholar
9. Drüsedau, T., Panckow, A., Herms, H., Sobotta, H., Riede, V., Böttcher, R. and Witzmann, H., J. Non-Cryst. Solids 155, 195 (1993).Google Scholar
10. Drüsedau, T., Jäger, S., Fiedler, H., Sobotta, H., Riede, V., Böttcher, R. and Witzmann, A., J. Non-Cryst. Solids 127, 165 (1991).Google Scholar
11. Wiedemann, S., Bennett, M. S. and Newton, J. L. in Amorphous Silicon Technology, edited by Madan, A., Thompson, M., Adler, D. and Hamakawa, Y. (Mat. Res. Soc. Proc. 95, Pittsburgh, PA, 1987) pp. 145.Google Scholar
12. Basrour, S., Bustarret, E. and Bruyere, J. C., Thin Solid Films 205, 223 (1991).Google Scholar
13. Stutzmann, M., Street, R. A., Tsai, C. C., Boyce, J. B. and Ready, S. E., J. Appl. Phys. 66, 569 (1989).Google Scholar
14. Drüsedau, T., J. Non-Cryst. Solids 137&138, 821 (1991).Google Scholar
15. Beyer, W., J. Non-Cryst. Solids 97&98, 1027 (1987).Google Scholar
16. Watanabe, T., Azuma, K., Nakatani, M. and Shimada, T., Jpn. J. Appl. Phys. 29, 1419 (1990).Google Scholar
17. Schubert, M. B., Weller, H. C., Eberhardt, K. and Bauer, G. H., J. Non-Cryst. Solids 114, 528 (1989).Google Scholar
18. Della Sala, D., Reita, C., Conte, G., Galuzzi, F. and Grillo, G., J. Appl. Phys. 67, 814 (1990).Google Scholar
19. Driisedau, T., phys. stat. sol. (b) 187, 117 (1995).Google Scholar
20. Li, Y. M. and Paul, W. in Amorphous Silicon Technology, edited by Schiff, E. A., Thompson, M. J., Madan, A., Tanaka, K. and LeComber, P. G. (Mat. Res. Soc. Symp. Proc. 219, Pittsburgh, PA, 1991) pp. 587.Google Scholar
21. Stutzmann, M., Phil. Mag. B 60, 531 (1989).Google Scholar