Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T04:08:47.683Z Has data issue: false hasContentIssue false

Investigation of the Layer-by-Layer Assembly of Colloid Crystals on a Templated Substrate

Published online by Cambridge University Press:  15 March 2011

Sonia Grego
Affiliation:
MCNC Research & Development Institute 3021 Cornwallis Road Research Triangle Park, NC 27709, U.S.A.
Thomas Jarvis
Affiliation:
MCNC Research & Development Institute 3021 Cornwallis Road Research Triangle Park, NC 27709, U.S.A.
Brian Stoner
Affiliation:
MCNC Research & Development Institute 3021 Cornwallis Road Research Triangle Park, NC 27709, U.S.A.
Jay Lewis
Affiliation:
MCNC Research & Development Institute 3021 Cornwallis Road Research Triangle Park, NC 27709, U.S.A.
Get access

Abstract

We investigated the fabrication of a 3D colloid crystal assembled in a layer-by-layer fashion on a template substrate. This method of assembling an ordered structure offers flexibility in the choice of crystal orientation, because of the template, and the capability to insert a “defect” layer to introduce defect modes in the stop bands of the crystal. The assembly of layers of 4.4 νm polystyrene microspheres on the patterned (100) substrates was studied using a combination of evaporation and chemical binding. It was observed that the ordering process depends on the physical parameters of the template such as well size and depth. A good adhesion of the beads to the template required chemical functionalization of the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fustin, C.-A., Glasser, G., Spiess, H.W., and Jonas, U., Advanced Materials 15, 1025–1018 (2003).Google Scholar
2. Zhao, Y., Wostyn, K., Schaetzen, G. de, Clays, K., Hellemans, L., Persoons, A., Szekeres, M., and Schoonheydt, R.A., Applied Physics Letters 82, 37643767 (2003).Google Scholar
3. Tétreault, N., Mihi, A., Hernán, M., Rodríguez, I., Ozin, G.A., Meseguer, F., and Kitaev, V., Advanced Materials 16, 346349 (2004).Google Scholar
4. Blaaderen, A. van, Ruel, R., and Wiltzius, P., Nature 385, 321324 (1997).Google Scholar
5. Zhang, J., Alsayed, A., Lin, K.H., Sanyal, S., Zhang, F., Pao, W.-J., Balagurusamy, V.S.K., Heiney, P.A., and Yodh, A.G., Applied Physics Letters 81, 3176–3178 (2002).Google Scholar
6. Yi, D.K., Seo, E.-M., and Kim, D.Y., Applied Physics Letters 80, 225227 (2002).Google Scholar
7. Yin, Y., Li, Z.-Y., and Xia, Y., Langmuir 19, 622631 (2003).Google Scholar
8. Yang, S.M., Míguez, H., and Ozin, G.A., Advanced Functional Materials 12, 425431 (2002).Google Scholar
9. Chen, K.M., Jiang, X., Kimerling, L.C., and Hammond, P.T., Langmuir 16, 78257834 (2000).Google Scholar
10. Jonas, U., Campo, A. del, Krüger, C., Glasser, G., and Boos, D., PNAS 99, 50345039 (2002).Google Scholar
11. Jiang, P., Bertone, J.F., Hwang, K.S., and Colvin, V.L., Chem. Mater. 11, 21322140 (1999).Google Scholar