Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T15:22:31.711Z Has data issue: false hasContentIssue false

Investigation of Quantum Dot Solar Cell Device Performance

Published online by Cambridge University Press:  08 August 2013

Neil S. Beattie
Affiliation:
Northumbria Photovoltaics Applications Group, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
Guillaume Zoppi
Affiliation:
Northumbria Photovoltaics Applications Group, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
Ian Farrer
Affiliation:
Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
Patrick See
Affiliation:
National Physical Laboratory, Teddington, Middlesex, TW11 0WE, United Kingdom
Robert W. Miles
Affiliation:
Northumbria Photovoltaics Applications Group, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
David A. Ritchie
Affiliation:
Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
Get access

Abstract

The device performance of GaAs p-i-n solar cells containing stacked layers of self-assembled InAs quantum dots is investigated. The solar cells demonstrate enhanced external quantum efficiency below the GaAs band gap relative to a control device without quantum dots. This is attributed to the capture of sub-band gap photons by the quantum dots. Analysis of the current density versus voltage characteristic for the quantum dot solar cell reveals a decrease in the series resistance as the device area is reduce from 0.16 cm2 to 0.01 cm2. This is effect is not observed in control devices and is quantum dot related. Furthermore, low temperature measurements of the open circuit voltage for both quantum dot and control devices provide experimental verification of the conditions required to realise an intermediate band gap solar cell.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Luque, A. and Martí, A., Phys. Rev. Lett. 78, 5014 (1997)CrossRefGoogle Scholar
Laghumavarapu, R. B., El-Emawy, M., Nuntawong, N., Moscho, A., Lester, L. F. and Huffaker, D. L., Appl. Phys. Lett. 91, 243115 (2007)CrossRefGoogle Scholar
Zhou, D., Vullum, P. E., Sharma, G., Thomassen, S. F., Holmestad, R., Reenaas, T. W. and Fimland, B. O., Appl. Phys. Lett. 96, 83108 (2010)CrossRefGoogle Scholar
Guimard, D., Morihara, R., Bordel, D., Tanabe, K., Wakayama, Y., Nishioka, M. and Arakawa, Y., Appl. Phys. Lett. 96, 203507 (2010)CrossRefGoogle Scholar
Bailey, C. G., Forbes, D. V., Raffaelle, R. P. and Hubbard, S. M., Appl. Phys. Lett. 98, 163105 (2011)CrossRefGoogle Scholar
Antolín, E., Martí, A., Farmer, C. D., Linares, P. G., Hernandez, E., Sánchez, A. M., Ben, T, Molina, S. I., Stanley, C. R. and luque, A., J. Appl. Phys. 108, 64513 (2010)CrossRefGoogle Scholar
Luque, A. and Martí, A., Adv. Mater. 22, 160 (2010)CrossRefGoogle Scholar