Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T23:20:45.122Z Has data issue: false hasContentIssue false

Investigation of electric fields, interface charges, and conduction band offsets at ZnSe/GaAs heterojunctions with a novel photoreflectance technique

Published online by Cambridge University Press:  03 September 2012

D. J. Dougherty
Affiliation:
Research Laboratory of Electronics, MIT 36-325, 50 Vassar St., Cambridge, MA 02139.
S.B. Fleischer
Affiliation:
Research Laboratory of Electronics, MIT 36-325, 50 Vassar St., Cambridge, MA 02139.
E. L. Warlick
Affiliation:
Research Laboratory of Electronics, MIT 36-325, 50 Vassar St., Cambridge, MA 02139.
J. L. House
Affiliation:
Research Laboratory of Electronics, MIT 36-325, 50 Vassar St., Cambridge, MA 02139.
G. S. Petrich
Affiliation:
Research Laboratory of Electronics, MIT 36-325, 50 Vassar St., Cambridge, MA 02139.
E. Ho
Affiliation:
Research Laboratory of Electronics, MIT 36-325, 50 Vassar St., Cambridge, MA 02139.
L. A. Kolodziejski
Affiliation:
Research Laboratory of Electronics, MIT 36-325, 50 Vassar St., Cambridge, MA 02139.
E. P. Ippen
Affiliation:
Research Laboratory of Electronics, MIT 36-325, 50 Vassar St., Cambridge, MA 02139.
Get access

Abstract

ZnSe/GaAs heterojunctions were investigated by contactless electroreflectance and photoreflectance techniques. Negative surface charge densities on the order of 1012 cm-2 were observed for films grown on n-type GaAs indicating a large contribution to the conduction band barrier between the materials due to band bending. The conduction band offset was also measured using a new photoreflectance technique involving a tunable pump laser.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yeganeh, M. S., Qi, J., Yodh, A. G. and Tamargo, M. C., Phys. Rev. Lett., 68, 3761(1992).Google Scholar
2 Bonnani, A., Vanzetti, L., Sorba, L., Franciosi, A., Lomascolo, M., Prete, P. and Cingolani, R., Appl. Phys. Lett., 66, 1092 (1995).Google Scholar
3 Rennie, J., Nishikawa, Y., Saito, S., Onomura, M. and Hatakoshi, G., Appl. Phys. Lett., 68, 2971 (1996).Google Scholar
4 Yin, X., Guo, X.,Pollak, F. H., Pettit, G. D., Woodall, J. M. and Cirlin, Eun-He, SPIE Proceedings, Vol. 1678, 168 (1992).Google Scholar
5 Yow, H. K., Houston, P. A. and Hopkinson, M., Appl. Phy. Lett., 66, 2852 (1995).Google Scholar
6 Pages, O., Renucci, M. A., Briot, O and Aulombard, R. L., J. Appl. Phys 80, 1128 (1996).Google Scholar
7 Ulbrich, R. G., Kash, J. A. and Tsang, J. C., Phys. Rev. Lett., 62, 949 (1989).Google Scholar