Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T15:31:02.994Z Has data issue: false hasContentIssue false

Investigation of Amorphous InGaZnO Based TFT Interface Properties with Synchrotron Radiation Analysis

Published online by Cambridge University Press:  01 February 2011

Minho Joo
Affiliation:
[email protected], LG Electronics Advanced Research Institute, Devices & Materials Laboratory, Seoul, Korea, Republic of
Jongkwon Choi
Affiliation:
[email protected], LG Electronics Advanced Research Institute, Devices & Materials Laboratory, Seoul, Korea, Republic of
Seokhwan Noh
Affiliation:
[email protected], LG Electronics Advanced Research Institute, Devices & Materials Laboratory, Seoul, Korea, Republic of
Kyuho Park
Affiliation:
[email protected], LG Electronics Advanced Research Institute, Devices & Materials Laboratory, Seoul, Korea, Republic of
Kyuwook Ihm
Affiliation:
[email protected], Beamline Research Devision, Pohang Accelerator Laboratory, Pohang, Korea, Republic of
Kijeong Kim
Affiliation:
[email protected], Beamline Research Devision, Pohang Accelerator Laboratory, Pohang, Korea, Republic of
Taihee Kang
Affiliation:
[email protected], Beamline Research Devision, Pohang Accelerator Laboratory, Pohang, Korea, Republic of
Get access

Abstract

We investigated the amorphous indium gallium zinc oxide (IGZO) based TFT interface properties using synchrotron radiation analysis. Near edge x-ray absorption fine structure shows the presence of N2 molecules between gate dielectric layer and active channel layer. The physical damage enhanced by the sputtering process was the origin of the device degradation evolving molecular state N2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H., Nature (Lodon) 432, 488 (2004).Google Scholar
2. Yabuta, H., Sano, M., Abe, K., Aiba, T., Den, T., Kumomi, H., Nomura, K., Kamiya, T., and Hosono, H., Appl. Phy. Lett. 89, 112123 (2006).Google Scholar
3. Nomura, K., Ohta, H., eda, K., Kamiya, T., Hirano, M., and Hosono, H., Science 300, 1269 (2003).Google Scholar
4. Hoffman, R. L., Norris, B. J., and Wager, J. F., Appl. Phys. Lett. 82, 733 (2003).Google Scholar
5. Chung, Y., Lee, J. C., and Shin, H. J., Appl. Phy. Lett. 86, 022901 (2005).Google Scholar
6. King, G. C., Read, F. H., and Tronc, M., Chem. Phys. Lett. 52, 50 (1997).Google Scholar
7. Chen, C. T., Ma, Y., and Sette, F., Phys. Rev. A 40, 6737 (1989).Google Scholar
8. Wu, Z. Y., Gota, S., Jollet, F., Pollak, M., Goutier-Soyer, M., and Natoli, C. R., Phys. Rev. B 55, 2570 (1997).Google Scholar
9. De Groot, F. M. F., Grioni, M., Fuggle, J. C., Ghijsen, J., and Sawatzky, G. A., Phys. Rev. B 40, 5715 (1989).Google Scholar