Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T21:43:06.106Z Has data issue: false hasContentIssue false

Intrinsic Point Defects on a TiO2(110) Surface and Their Reaction with Oxygen: A Scanning Tunneling Microscopy Study

Published online by Cambridge University Press:  15 February 2011

Markus Kuhn
Affiliation:
Department of Physics, Tulane University, New Orleans, LA 70118
J. F. Anderson
Affiliation:
Department of Physics, Tulane University, New Orleans, LA 70118
Jeremy Lehman
Affiliation:
Department of Physics, Tulane University, New Orleans, LA 70118
Talib Mahmoud
Affiliation:
Department of Physics, Tulane University, New Orleans, LA 70118
Ulrike Diebold
Affiliation:
Department of Physics, Tulane University, New Orleans, LA 70118
Get access

Abstract

The interaction of molecular oxygen, at room temperature, with a reduced TiO2(110) surface has been studied in situ by scanning tunneling microscopy (STM). Oxygen vacancies (point defects) were created on a clean TiO2(110) surface by annealing in ultra-high vacuum and successfully imaged on the atomic scale. These point defect sites were stable under ultrahigh vacuum conditions. During exposure to molecular oxygen, new point defects appear at different locations on the surface although their overall number is reduced. A mechanism for this dynamic healing process is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Henrich, V. E. and Cox, P. A., The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, 1994.Google Scholar
2. Barteau, M. A., J. Vac. Sci. Technol. A 11, 2162 (1993).Google Scholar
3. Barteau, M. A., Chemical Review (in press).Google Scholar
4. Henrich, V. E. and Kurtz, R. L., Phys. Rev. B 23, 6280 (1981).Google Scholar
5. Ramamoorthy, M., Vanderbilt, D., and King-Smith, R. D., Phys. Rev. B 49, 16721 (1994).Google Scholar
6. Rohrer, G. S., Henrich, V. E., and Bonnell, D. A., Science 250, 1239 (1990).Google Scholar
7. Diebold, U., Anderson, J. F., Ng, K.-O., and Vanderbilt, D., Phys. Rev. Lett. 77, 1322 (1996).Google Scholar
8. Fischer, S., Munz, A. W., Schierbaum, K.-D., and Göpel, W., Surf. Sci. 337, 17 (1995).Google Scholar
9. Göpel, W., Rocker, G., and Feierabend, R., Phys. Rev. B 28, 3427 (1983).Google Scholar
10. Göpel, W., Anderson, J. A., Frankéi, S., Jaehnig, M., Phillips, K., Schäfer, J. A., and Rocker, G., Surf. Sci. 139, 333 (1984).Google Scholar
11. Kurtz, R. L., Stockbauer, R., Madey, T. E., Roman, E., and Segovia, J. L. d., Surf. Sci. 218, 178(1989).Google Scholar
12. Lu, G., Linsebigler, A., and Yates, J. J.T., J. Chem. Phys. 102, 3005 (1995).Google Scholar
13. Lu, G., Linsebigler, A., and Yates, J. J.T., J. Chem. Phys. 102, 4657 (1995).Google Scholar
14. Pan, J.-M., Maschhoff, B. L., Diebold, U., and Madey, T. E., J. Vac. Sci. Technol. A 10, 2470 (1992).Google Scholar
15. Onishi, H. and Iwasawa, Y., Phys. Rev. Lett. 76, 791 (1996).Google Scholar
16. Zhang, L. P., Kuhn, M., and Diebold, U., Surf. Sci. 371, 223 (1997).Google Scholar
17. Lide, D. R., Handbook of Chemistry and Physics. 74th ed., CRC Press, Ann Arbor, 1993, pp. 9127.Google Scholar
18. Samsonov, S., The Oxide Handbook. IFI/Plenum, New York, 1973, p. 152.Google Scholar