Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T00:16:51.079Z Has data issue: false hasContentIssue false

Intersubband Transitions, Infrared Detectors, and Optical Nonlinearities in SiGe Multiquantum Wells

Published online by Cambridge University Press:  10 February 2011

M. Helm
Affiliation:
Institut für Halbleiterphysik, Universität Linz, A-4040 Linz, Austria
P. Kruck
Affiliation:
Institut für Halbleiterphysik, Universität Linz, A-4040 Linz, Austria
T. Fromherz
Affiliation:
Institut für Halbleiterphysik, Universität Linz, A-4040 Linz, Austria
M. Seto
Affiliation:
Institut für Halbleiterphysik, Universität Linz, A-4040 Linz, Austria
G. Bauer
Affiliation:
Institut für Halbleiterphysik, Universität Linz, A-4040 Linz, Austria
J. F. Nützel
Affiliation:
Walter Schottky Institut, TU München, D-85748 Garching, Germany
G. Abstreiter
Affiliation:
Institut für Halbleiterphysik, Universität Linz, A-4040 Linz, Austria
Get access

Abstract

A survey is given about the potential use of Si/SiGe heterostructures for applications in the mid-infrared spectral range. We discuss theoretical foundations and experiments of intersubband absorption in p-type Si/SiGe quantum wells and show that due to the complex valence-band structure, normal-incidence absorption can be observed. On the basis of these quantum wells, mid-infrared detectors were fabricated and characterized in terms of responsivity, dark current and detectivity. In asymmetric, compositionally stepped quantum wells second harmonic generation of CO2 laser radiation has been demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. for a recent survey, see Quantum Well Intersubband Transition Physics and Devices, ed. Liu, H. C., Levine, B. F., and Andersson, J. Y. (Kluwer Academic Publishers, Dordrecht, 1993).Google Scholar
2. Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hulchinson, A. L., and Cho, A. Y., Science 264 (1994) 553;Google Scholar
Faist, J., Capasso, F., Sirtori, C., Sivco, D. L., Baillargeon, J. N., Hutchinson, A. L., Chu, S.-N. G., and Cho, A. Y., Appl. Phys. Lett. 68, 3680 (1996)Google Scholar
3. Levine, B. F., J. Appl. Phys. 74 (1993) Rl.Google Scholar
4. Rosencher, E. and Bois, Ph., Phys. Rev. B 44 (1991) 11415;Google Scholar
Rosencher, E., Fiore, A., Vinter, B., Berger, V., Bois, Ph., and Nagle, J., Science 271 (1996) 168.Google Scholar
5. Capasso, F., Sirtori, C., and Cho, A. Y., IEEE J. Quantum Electron. 30 (1994) 1313.Google Scholar
6. Hertle, H., Schuberth, G., Gornik, E., Abscreiter, G., and Schäffler, F., Appl. Phys. Lett. 59 (1991)2977.Google Scholar
7. Kane, M. J., Emeny, M. T., Apsley, N., Whitehouse, C. R., and Lee, D., Semicond. Sci. Technol. 3(1988)722.Google Scholar
8. Chang, Y. C. and James, R. B., Phys. Rev. B. 39 (1989) 12672.Google Scholar
9. Man, P. and Pan, D. S., Appl. Phys. Lett. 61 (1992) 2799.Google Scholar
10. Corbin, E., Wong, K. B., and Jaros, M., Phys. Rev. B 50 (1994) 2339.Google Scholar
11. Szmulowicz, F. and Brown, G. J., Phys. Rev. B 51 (1995) 13203.Google Scholar
12. Chun, S. K., Pan, D. S. and Wang, K. L., Phys. Rev. B 47 (1993) 15638.Google Scholar
13. Park, J. S., Karunasiri, R. P. G., and Wang, K. L., Appl. Phys. Lett. 61 (1992) 681;Google Scholar
Karunasiri, R. P. G., Park, J. S., and Wang, K. L., Appl. Phys. Lett. 61 (1992) 2434.Google Scholar
14. Levine, B. F., Gunapala, S. D., Kuo, J. M., Pei, S. S., and Hui, S., Appl. Phys. Lett. 59 (1991) 1864.Google Scholar
15. People, R., Bean, J. C., Bethea, C.G., Sputz, S.K., and Peticolas, L.J., Appl. Phys. Lett. 61 (1992) 1122.Google Scholar
16. Bauer, G., Li, J., and Koppensteiner, E., Crystal, J. Growth 157 (1995) 61.Google Scholar
17. West, L. C. and Eglash, S. J., Appl. Phys. Lett. 46 (1985) 1156.Google Scholar
18. Zanier, S., Berroir, J. M., Guldner, Y., Vieren, J. P., Sagnes, I., Glowacki, F., Campidelli, Y., and Badoz, P. A., Phys. Rev. B 51 (1995) 14311.Google Scholar
19. Boucaud, P., Gao, L., Moussa, Z., Visocekas, F., Julien, F. H., Lourtioz, J.-M., Sagnes, I., Campidelli, Y., and Badoz, P.-A., Appl. Phys. Lett. 67 (1995) 2948.Google Scholar
20. Fromherz, T., Koppensteiner, E., Helm, M., Bauer, G., Nützel, J. F., and Abstreiter, G., Phys. Rev. B 50 (1994) 15073; Superlatt. Microstruct. 15 (1994) 229.Google Scholar
21. Allen, S. J. Jr, Tsui, D. C., and Vinter, B., Solid State Commun. 20 (1976) 425;Google Scholar
Ando, T., Solid State Commun. 21 (1977) 133.Google Scholar
22. Fromherz, T., Kruck, P., Helm, M., Bauer, G., Nützel, J. F., and Abstreiter, G., Appl. Phys. Lett. 68, 3611 (1996); Superlatt. Microstruct. 20, 237 (1996).Google Scholar
23. Semiconductor Quantum Wells and Superlattices for Long- Wavelength Infrared Detectors, ed. Manasreh, M.O. (Artech House, Boston, 1993);Google Scholar
Homojunction and Quantum Well Infrared Detectors, ed. Francombe, M. H. and Vossen, J. L. (Academie Press, San Diego, 1995).Google Scholar
24. Kruck, P., Helm, M., Fromherz, T., Bauer, G., Nützel, J. F., and Abstreiter, G., Appl. Phys. Lett. 69, 25 Nov (1996).Google Scholar
25. Fenigstein, A., Finkman, E., Bahir, G., and Schacham, S. E., J. Appl. Phys. 76, (1994) 1998.Google Scholar
26. Liu, H. C., Appl. Phys. Lett. 60 (1992) 1507.Google Scholar
27. Seto, M., Helm, M., Moussa, Z., Boucaud, P., Julien, F. H., Lourtioz, J.-M., Nützel, J. F., and Abstreiter, G., Appl. Phys. Lett. 65 (1994) 2969.Google Scholar
28. Kruck, P., Seto, M., Helm, M., Moussa, Z., Boucaud, P., Julien, F. H., Lourtioz, J.-M., Nützel, J. F., and Abstreiter, G., Solid State Electron. 40 (1996) 763 Google Scholar
29. Shaw, M. J., Jaros, M., Xu, Z., Fauchet, P. M., Relia, C. W., Richman, B. A., Schwettman, H. A., and Wicks, G. W., Phys. Rev. B 50 (1994) 18395.Google Scholar
30. Sun, G., Friedman, L., and Soref, R. A., Appl. Phys. Lett. 66, 3425 (1995).Google Scholar