Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T09:18:36.408Z Has data issue: false hasContentIssue false

Intermetallic Compounds in Co-base Alloys–Phase Stability and Application to Superalloys

Published online by Cambridge University Press:  01 February 2011

Kiyohito Ishida*
Affiliation:
[email protected], United States
Get access

Abstract

The phase stability of intermetallic compounds of Co3X has been discussed with a focus on the γ' phase of Co3Al, Co3W and Co3(Al, W) with the L12 structure. The critical temperatures of the γ' phase of Co3Al, Co3W and Co3(Al, W) compounds are estimated to be about 870 , 980 and 1076 , respectively. The effect of alloying elements on the Co-Al-W -base alloys was found to be very similar to that of Ni-base superalloys, where Ti, Ta, Nb and V are the γ' stabilizing elements, while Mn, Fe and Cr are the γ' forming elements. The mechanical properties of Co-Al-W-base alloys were also found to be similar to those of Ni-base alloys. In particular, the flow strengths of Co-Al-W-base alloys at temperatures above 800 were comparable or higher than those of Ni-base superalloys, which implies that the Co-base superalloys strengthened by the γ' phase have great potential as a new type of high-temperature alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Decker, R. F. and Sims, C. T., in The Superalloys, Sims, C. T., Hagel, W. C., Eds., Wiley, New York, 33 (1972).Google Scholar
2. Binary Phase Diagrams, Vol. 1, 2nd ed., by Massalski, T.B., Okamoto, H., Subremanian, P. R. and Kacprzak, L., ASM Int. Materials Park, OH 136, 181 (1990).Google Scholar
3. Sims, C. T., in The superalloys, Sims, C. T., Hagel, W. C., Eds., Wiley, New York, 145 (1972).Google Scholar
4. Blaise, J. M., Viatour, P. and Drapier, J. M., Cobalt 49, 192 (1970).Google Scholar
5. Viatour, P., Drapier, J. M. and Coutsouradis, D., Cobalt 3, 67 (1973).Google Scholar
6. Korchynsky, M. and Fountain, R. W., Trans. Met. Soc. AIME 215, 1033 (1959).Google Scholar
7. Dragsdorf, R. D. and Forgeng, W. D., Acta Cryst. 15, 531 (1962).Google Scholar
8. Drapier, J. M., de Brouwer, J. L. and Coutsouradis, D., Cobalt 27, 59 (1965).Google Scholar
9. Drapier, J. M. and Coutsouradis, D., Cobalt 39, 63 (1968).Google Scholar
10. Ohtani, H., Yamano, M. and Hasebe, M., Calphad 28, 177 (2004).Google Scholar
11. Sato, J., Omori, T., Oikawa, K., Ohnuma, I., Kainuma, R. and Ishida, K, Science 312, 90 (2006).Google Scholar
12. de Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R. and Niessen, A. K., Cohension in Metals, Transition Metal Alloys, Noth-Holland, (1989).Google Scholar
13. Ishida, K., Kainuma, R. and Nishizawa, T., Symp. Proc. on Mechanical Properties and Phase Transformations of Multi-phase Intermetallic Alloys, TMS, 77 (1995).Google Scholar
14. Bradley, A. J. and Seager, G. C., J. Inst. Met. 64, 81 (1939).Google Scholar
15. Edwards, O. S., Inst. Met. 67, 67 (1941).Google Scholar
16. Omori, T., Sutou, Y., Oikawa, K., Kainuma, R. and Ishida, K., Mater. Sci. Eng. A438–440, 1045 (2006).Google Scholar
17. Johannesson, G. H., Bligaard, T., Ruban, A. V., Skriver, H. L., Jacobsen, K. W. and Norskov, J. K., Phys. Rev. Lett. 88, 255506 (2002).Google Scholar
18. Jiang, M., Sato, J., Oikawa, K., Ohnuma, I, Kainuma, R. and Ishida, K., To be submitted.Google Scholar
19. Dutkiewicz, J. and Kostorz, G., Acta metal mater. 38, 2283 (1990).Google Scholar
20. Sato, J., Oikawa, K., Kainuma, R. and Ishida, K., Mater. Trans. 46, 1199 (2005).Google Scholar
21. Chinen, H., Sato, J., Omori, T., Oikawa, K., Ohnuma, I., Kainuma, R. and Ishida, K., Scripta Mater. 56, 141 (2007).Google Scholar
22. Chinen, H., Omori, T., Oikawa, K., Ohnuma, I., Kainuma, R. and Ishida, K., To be submitted.Google Scholar
23. Omori, T., Sato, J., Oikawa, K., Ohnuma, I., Kainuma, R. and Ishida, K., To be submitted.Google Scholar
24. Jia, C. C., Ishida, K. and Nishizawa, T., Metall. Mater. Trans. A 25A, 473 (1994).Google Scholar
25. Shinagawa, K., Omori, T., Sato, J., Oikawa, K., Ohnuma, I., Kainuma, R. and Ishida, K., Mater. Trans. 49, 1474 (2008).Google Scholar
26. Kainuma, R., Ise, M., Jia, C. C., Ohtani, H. and Ishida, K., Intermetallics 4, S151 (1996).Google Scholar
27. Yao, Q., Xing, H. and Sun, J., Appl. Phys. Lett., 89, 161906 (2006).Google Scholar
28. Tanaka, K., Ohashi, T., Kishida, K. and Inui, H, Appl. Phys. Lett. 91, 181907 (2007).Google Scholar
29. Miura, S., Ohkubo, K. and Mohri, T., Mater. Trans. 48, 2403 (2007).Google Scholar
30. Stoloff, N. S.., in Metals Handbook, ASM International ed. 10, Vol. 1, 950 (1990).Google Scholar
31. Suzuki, A., DeNolf, G. C. and Pollock, T. M., Scripta. Mater. 56, 385 (2007).Google Scholar
32. Suzuki, A. and Pollock, T. M., Acta Materialia 56, 1288 (2008).Google Scholar
33. Suzuki, A., DeNolf, G. C. and Pollock, T. M., MRS Proc. 980, 499 (2007).Google Scholar
34. Shinagawa, K., Omori, T., Sato, J., Oikawa, K., Ohnuma, I., Kainuma, R. and Ishida, K., Presented at 2008 MRS Fall Meeting.Google Scholar
35. Osaki, M., Ueta, S., Shimizu, T., Omori, T. and Ishida, K., Denki-Seiko 79, 197 (2008).Google Scholar