Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T03:03:30.409Z Has data issue: false hasContentIssue false

Interfacial Structure of BaRuO3 Thin Films Grown On (111) SrTiO3

Published online by Cambridge University Press:  21 March 2011

W. Tian
Affiliation:
Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, MI
M. K. Lee
Affiliation:
Department of Materials Science and Engineering, The University of Wisconsin, Madison, WI
C. B. Eom
Affiliation:
Department of Materials Science and Engineering, The University of Wisconsin, Madison, WI
X. Q. Pan
Affiliation:
Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, MI
Get access

Abstract

BaRuO3 thin films were grown on (111) SrTiO3substrate by 90° off-axis rf-sputtering. Transmission electron microscopy studies revealed that the films consist of the metastable 4H hexagonal polymorph of BaRuO3 along with few defects. The films are c-axis oriented, single crystalline with the in-plane orientation relationship with respect to the SrTiO3substrate of [112 0] BaRuO3 // [110] SrTiO3. High-resolution transmission electron microscopy (HRTEM) studies of the film-substrate interface revealed the existence of a thin intermediate layer of the 9R hexagonal polymorph of BaRuO3 between the (111) SrTiO3 substrate and the 4H film. The formation mechanism for the intermediate layer is not fully understood though. Through the combination of HRTEM and quantitative image simulations, the atomic structure of the interface between the 9R intermediate layer and the underneath (111) SrTiO3 was constructed. Three initial growth modes were observed, each of them adopting the local continuity of the oxygen octahedral sublattice across the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Eom, C. B., Cava, R. J., Fleming, R. M., Phillips, J. M., Dover, R. B. Van, Marshall, J. H., Hsu, J. W. P., Krajewski, J. J., and Peck, W. F., Science 258, 1766 (1992).Google Scholar
2. Wu, X. D., Foltyn, S. R., Due, R. C., and Muenchausen, R. E., Appl. Phys. Lett. 62, 2434 (1993).Google Scholar
3. Jia, Q. X., Wu, X. D., Fdltyn, S. R., and Tiwari, P., Appl. Phys. Lett. 66, 2197 (1995).Google Scholar
4. Maeno, Y., Hashimoto, H., Yoshida, K., Nishizaki, S., Fujita, T., Bednorz, J. G., and Lichtrnberg, F., Nature (London) 372, 532 (1994).Google Scholar
5. Rice, T. M. and Sigrist, M., J. Phys.: Condens. Matter 7, L643 (1995).Google Scholar
6. Randall, J. J. and Ward, R., J. Am. Chem. Soc. 81, 2629 (1959).Google Scholar
7. Donohue, P. C., Katz, L., and Ward, R., Inorg. Chem. 4, 306 (1965).Google Scholar
8. Kobayashi, H., Nagata, M., Kanno, R., and Kawamoto, Y., Mater. Res. Bull. 29, 1271 (1994).Google Scholar
9. Rijssenbeek, J. T., Jin, R., Zadorozhny, Y., Lu, Y., Batlogg, B., and Cava, R. J., Phys. Rev. B 59, 4561 (1999).Google Scholar
10. Longo, J. M. and Kafalas, J. A., Mater. Res. Bull. 3, 687 (1968).Google Scholar
11. Hong, S. T. and Sleight, A. W., J. Solid State Chem. 128, 251 (1997).Google Scholar
12. Flynn, C. P., Phys. Rev. Lett. 57, 599 (1986).Google Scholar
13. Lee, M. K., Eom, C. B., Tian, W., Pan, X. Q., Smoak, M., Tsui, F., and Krajewski, J. J., Appl. Phys. Lett. 77, 364 (2000).Google Scholar
14. Stadelmann, P. A., Ultramicroscopy 21, 131 (1987).Google Scholar
15. Tian, W., Pan, X. Q., Lee, M. K. and Eom, C. B., Appl. Phys. Lett. 77, 1985 (2000).Google Scholar