Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T16:05:46.786Z Has data issue: false hasContentIssue false

Interfacial Diffusion

Published online by Cambridge University Press:  26 February 2011

Alan Atkinson*
Affiliation:
Materials Development Division, Building 552, Harwell Laboratory, UKAEA, Oxfordshire, OX11 ORA, UK
Get access

Abstract

The current understanding of mass transport at interfaces in solids is reviewed. The materials covered are metals, semiconductors and ionic compounds and the interfaces are mainly grain boundaries.

In metals and semiconductors grain boundary diffusion is always faster than the bulk and both experiments and theory support the concept of narrow (about 1 nm) pathways in which fast diffusion occurs by a point defect mechanism. In ionic compounds, however, experiments have indicated that in some materials grain boundary diffusion is faster in the bulk whereas in others it is slower. Furthermore, different workers have reached different conclusions in, ostensibly, the same materials. The possible reasons for this lack of convergence are discussed.

In the author's opinion no satisfactory link between interface structure and mass transport has yet been established in any material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Peterson, N.L., Grain Boundary Structure and Kinetics (ASM, Metals Park, Ohio, 1980) p 209.Google Scholar
2. Balluffi, R.W., Metall. Trans. A. 13A, 2069 (1982).Google Scholar
3. Atkinson, A., J. Phys. (Paris) 46 C4379 (1985).Google Scholar
4. Holloway, P.H., J. Vac. Sci. TeEFhnol. 21 19 (1982).CrossRefGoogle Scholar
5. LeClaire, A.D., Br. J. Appl. Phys. 14 31 (1963)Google Scholar
6. Benoist, P. and Martin, G., Thin Solid Films 25 181 (1975).Google Scholar
7. Murch, G.E., Diffusion and Defect Data 32 1 (1983).CrossRefGoogle Scholar
8. Harrison, L.G., Trans. Faraday Soc., 57 1191 (1961).CrossRefGoogle Scholar
9. Atkinson, A. and Taylor, R.I., Philos. Mag. A43, 979 (1981).CrossRefGoogle Scholar
10. Atkinson, A. and Taylor, R.I., J. Phys. Chem. Solids 47 315 (1986).Google Scholar
11. Pierantoni, M., Aufray, B. and Cabané, F., J. Phys. (Paris) 46, C4537 (1985).Google Scholar
12. Gust, W., Mayer, S., Bögel, A. and Predel, B., J. Phys (Paris) 46, C4537 (1967).Google Scholar
13. Martin, G., Blackburn, D.A. and Adda, Y., Phys. Stat. Sol 23, 223 (1967).Google Scholar
14. Balluffi, R.W., Kwok, T., Bristowe, P.D., Brokman, A., Ho, P.S. and Yip, S., Scripta Metall. 15, 951 (1981).Google Scholar
15. Hansel, H., Stratmann, L., Keller, H. and Grabke, H.J., Acta Metall. 33, 659 (1985).Google Scholar
16. Neuhaus, P. and Herzig, C., Acta Metall. 35, 881 (1987).Google Scholar
17. Gas, P.. Poize, S., Bernadini, J. and Cabané, F., to be published in Acta Metall.Google Scholar
18. Gust, W., Hintz, M.B. and Predel, B., J. Phys. (Paris) 46, C4529 (1985).Google Scholar
19. Harvath, J., Birringer, R. and Gleiter, H., Solid State Comm. 62 319 (1987).Google Scholar
20. Karch, J., Birringer, B. and Gleiter, H., Nature 330, 556 (1987).CrossRefGoogle Scholar
21. Atkinson, A. and Taylor, R.I., Philos. Mag A 39, 581 (1979).CrossRefGoogle Scholar
22. Dubois, C., Monty, C. and Philibert, J., Philos. Mag A 46 419 (1982).Google Scholar
23. Atkinson, A., Pummery, F.C.W. and Monty, C. in Transport-in Nonstoichiometric Compounds edited by Simkovich, G. and Stubican, V.S. (Plenum, New York, 1985) p. 359.Google Scholar
24. Ho, Y.K. and Pratt, P.L., Radiation Effects, 75, 183 (1983).Google Scholar
25. Archer, J.A. and Chadwick, A.V., to be published.Google Scholar
26. Duffy, D.M. and Tasker, P.W., Philos. Mag. A 54, 759 (1986).CrossRefGoogle Scholar
27. Perinet, F., Thése, Université de Paris-Sud, Orsay, 1987.Google Scholar
28. Bernardini, J., Gas, P.. Hondros, E.D. and Seah, M.P., Proc. R. Soc. Lond. A 379, 159 (1982).Google Scholar
29. Atkinson, A., Smart, D.W. and Taylor, R.I., Werks. u. Korros. 38 704 (1987).Google Scholar
30. Osenbach, J.W. and Stubican, V.S., J. Amer. Ceram. Soc. 66, 191 (1983).Google Scholar
31. Stubican, V.S., Huzinec, G. and Damjanovic, D.. J. Amer. Ceram. Soc., 68 181 (1985).Google Scholar
32. Moya, E.G., Badrour, L., Bernardini, J. and Moya, F., to be published.Google Scholar
33. Gaddipati, A.R. and Scott, W.D., J. Mater. Sci. 21, 419 (1986).Google Scholar
34. Reddy, K.P.R., Ph.D. Thesis, Case Western Reserve University 1979.Google Scholar
35. Lagrange, M.H., Huntz, A.M. and Davidson, J.H., Corros. Sci., 24 613 (1984).Google Scholar
36. Barbier, F., Thése d'Etat, Université Paris-Sud, Orsay (1986).Google Scholar
37. Atkinson, A., Moon, D.P., Smart, D.W. and Taylor, R.I., J. Mater. Sci., 21, 1747 (1986).Google Scholar
38. Harris, L.B., Taylor, R.I. and Atkinson, A., J. Mater. Sci., 22, 1993 (1987).CrossRefGoogle Scholar
39. Kreuer, K.D., Kohler, H., Warhus, U. and Schultz, H., Mater. Res. Bull. 21, 149 (1986).Google Scholar
40. Maier, J., Ber. Bunserges. Phys. Chem., 90, 26 (1986).Google Scholar
41. Aucouturier, M. in Polycrystalline Semiconductors Edited by Harbeke, G. (Springer-Verlag, Berlin, 1985) p 47.Google Scholar
42. Grovenor, C.R.M., J. Phys. C: Solid State Phys. 18 4079 (1985).Google Scholar
43. Liotard, J.L., Bibérian, R. and Cabané, J., J. Phys. (Paris) 43 CI-2131 (1982).Google Scholar
44. Hu, S.M. in Atomic Diffusion in Semiconductors Edited by Shaw, D. (Plenum, New York, 1973) p. 217.Google Scholar