Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T03:11:18.187Z Has data issue: false hasContentIssue false

Interfacial Control of Creep Deformation in Ultrafine Lamellar TiAl

Published online by Cambridge University Press:  11 February 2011

L. M. Hsiung*
Affiliation:
University of California, Lawrence Livermore National Laboratory, Chemistry and Materials Science Directorate, Livermore, CA 94551–9900, U.S.A.
Get access

Abstract

Solute effect on the creep resistance of two-phase lamellar TiAl with an ultrafine microstructure creep-deformed in a low-stress (LS) creep regime [where a nearly linear creep behavior was observed] has been investigated. The resulted deformation substructure and in-situ TEM experiment reveals that interface sliding by the motion of pre-existing interfacial dislocations is the predominant deformation mechanism in LS creep regime. Solute segregation at interfaces and interfacial precipitation caused by the segregation result in an increase of creep resistance in LS creep regime.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, Y-W. and Dimiduk, D.M., JOM, 43(8), 40 (1991).Google Scholar
2. Kim, Y –W., Acta Metall. Mater. 40, 1121 (1992).Google Scholar
3. Wang, J. N., Schwartz, A. J., Nieh, T. G., Liu, C. T., Sikka, V. K. and Clemens, D. R., in Gamma Titanium Aluminides, ed. Kim, Y-W. et al., TMS (Warrendale, PA), 949, (1995).Google Scholar
4. Liu, C.T., Schneibel, J.H., Maziasz, P.J., Wright, J.L., Easton, D.S., Intermetallics 4, 429 (1996).Google Scholar
5. Liu, C. T., Maziasz, P. J., Wright, J. L., Mat. Res. Soc. Symp. Proc., 460, 83 (1997).Google Scholar
6. Hsiung, L.M., Nieh, T.G. and Clemens, D.R., Scripta Mater., 36 (1997), 233.Google Scholar
7. Hono, K., Abe, E., Kumagai, T., Harada, H., Scripta Mater., 35, 495 (1996).Google Scholar
8. Wang, J. N. and Nieh, T. G., Acta Mater., 46, 1887 (1998).Google Scholar
9. Hsiung, L. M. and Nieh, T. G., Intermetallics 7, 821 (1999).Google Scholar
10. Hsiung, L.M., Nieh, T.G., Choi, B.W., and Wadsworth, J., Mater. Sci. Eng., A329–331, (2002), 637.Google Scholar
11. Yamaguchi, M., Nishitani, S.R., Shirai, Y., in High Temperature Aluminides and Intermetallics, ed. Whang, S.H. et al., TMS (Warrendale, PA), 63, 1990.Google Scholar
12. Yamamoto, Y., Takeyama, M., Matsuo, T., Mater. Sci. and Engrg., A329–331, 631 (2002).Google Scholar
13. Mahon, G.J. and Howe, J.M., Metall. Trans. A, 21, 1655 (1990).Google Scholar
14. Zhao, L. and Tangri, K., Acta Metall. Mater., 39, 2209.Google Scholar
15. Hsiung, L. M. and Nieh, T. G., Mater. Sci. Engrg., A239–240, 438 (1997).Google Scholar
16. Hsiung, L. M., Schwartz, A. J. and Nieh, T. G., Scripta Mater. 36, 1017 (1997).Google Scholar
17. Liu, C.T., Maziasz, P.J., Larson, D.J., in Interstitial and Substitutional Solute Effects in Intermetallics, ed. Baker, I. et al., TMS (Warrendale, PA), 179 (1998).Google Scholar
18. De Graef, M., Hardwick, D.A., Martin, P.L., in Structural Intermetallics, ed. Nathal, M.V. et al., TMS (Warrendale, PA), 177 (1993).Google Scholar
19. Larson, D.J., Liu, C.T., Miller, M.K., Intermetallics 5, 411 (1997).Google Scholar
20. Liu, C.T., Wright, J.L., Deevi, S.C., Mater. Sci. and Engrg., A329–331, 416 (2002).Google Scholar