Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T11:50:42.525Z Has data issue: false hasContentIssue false

Interface-charge-coupled polarization response model of Pt-BaTiO3-ZnO-Pt heterojunctions: Physical parameters variation

Published online by Cambridge University Press:  01 February 2011

Venkata Voora
Affiliation:
[email protected], University of Nebraska-Lincoln, Department of Electrical Engineering, 209 N WSEC, UNL, Lincoln, NE, 68588, United States
Tino Hofmann
Affiliation:
[email protected], University of Nebraska-Lincoln, Department of Electrical Engineering, Lincoln, NE, 68588, United States
Ann Kjerstad
Affiliation:
[email protected], University of Nebraska-Lincoln, Department of Electrical Engineering, Lincoln, NE, 68588, United States
Matthias Brandt
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, N/A, Germany
Michael Lorenz
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, N/A, Germany
Marius Grundmann
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, N/A, Germany
Mathias Schubert
Affiliation:
[email protected], University of Nebraska-Lincoln, Department of Electrical Engineering, Lincoln, NE, 68588, United States
Get access

Abstract

Heterojunctions composed of wurtzite-structure (piezoelectric) ZnO and perovskite-structure (ferroelectric) BaTiO3 are very interesting because of the coupling effects between the non-switchable ionic charge of wurtzite-structure and electrically switchable lattice charge of pervoskite structure at their common interface. In this paper we report the variations in the overall electrical properties of the ZnO-BaTiO3 heterostructure as a function of different physical attributes by using our previously reported physical model approach. This numerical model analysis helps us to prepare the samples by using pulsed laser deposition with specific electrical properties. This study is also useful for the future device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bowen, C. R. Gittings, J. Turner, I.G. Baxter, F. and Chaudhuri, J. B. Appl. Phys. Lett. 89, 132906 (2006).Google Scholar
2. Ishikawa, K. and Uemori, T. Phys. Rev. B 60, 11841 (1999).Google Scholar
3. Zhong, W. Vanderbilt, D. and Rabe, K. M. Phys. Rev. B 25, 6301 (1995).Google Scholar
4. Bundesmann, C. Schmidt-Grund, R., and Schubert, M. Optical Properties of Zinc Oxide and related Compounds, In: Ellmer, K. Klein, A. Rech, B. (eds.), .Transparent Conductive Zinc Oxide. Basics and Applications in Thin Film and Solar Cells. (Springer Series in Materials Science Vol. 104, Berlin, 2008) p. 79124.Google Scholar
5. Liu, Guo-zhen, Jin, Kui-juan, Qiu, J. He, M. Lu, Hui-bin, Xing, J. Zhou, Yue-liang, and Yang, Guo-zhen, Appl. Phys. Lett. 91, 252110 (2007).Google Scholar
6. Schubert, M. Ashkenov, N. Hofmann, T. Hochmuth, H. Lorenz, M. Grundmann, M. and Wagner, G. Ann. Phys. 13, 61 (2004).Google Scholar
7. Mbenkum, B. N. Ashkenov, N. et al. , Appl. Phys. Lett. 86, 091904 (2005).Google Scholar
8. Voora, V. M. Hofmann, T. Brandt, M. Lorenz, M. Grundmann, M. and Schubert, M. Phys. Stat. Sol. C 5, 1328 (2008)Google Scholar
9. Ashkenov, N. Schubert, M. et al. , Thin Solid Films 486, 153 (2005).Google Scholar
10. Voora, V. M. Hofmann, T. Brandt, M. Lorenz, M. Grundmann, M. Ashkenov, N. and Schubert, M. J. Electron. Mater. in press (2008).Google Scholar
11. Miller, S. L. Nasby, R. D. Schwank, J. R. Rodgers, M. S. and Dressendorfer, P. V. J. Appl. Phys. 63, 6463 (1990).Google Scholar
12. Miller, S. L. Schwank, J. R. Nasby, R. D. and Rodgers, M. S. J. Appl. Phys. 70, 2849 (1991).Google Scholar
13. Tsang, C. H. Wong, C. K. and Shin, F. G. J. Appl. Phys. 98, 084103 (2005).Google Scholar
14. Ye, Z. Tang, M. H. Cheng, C. P. Zhou, Y. C. Zhou, X. J. and Hu, Z. S. J. Appl. Phys. 100, 094101 (2006).Google Scholar
15. Bernardini, F. and Fiorentini, V. Phys. Rev. B 56, R10024 (1997).Google Scholar