Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T12:40:29.262Z Has data issue: false hasContentIssue false

Interface Effect on the Transverse Thermal Conductivity of SiO2 Films Deposited on Silicon

Published online by Cambridge University Press:  10 February 2011

W. Zhao
Affiliation:
Rice University, Dept. of Mech. Engi. and Mat. Sci., Houston, TX 77005
F. R. Brotzen
Affiliation:
Rice University, Dept. of Mech. Engi. and Mat. Sci., Houston, TX 77005
L. Hehn
Affiliation:
University of Houston, Dept. of Electrical Engineering, Houston, TX
P. J. Loos
Affiliation:
Texas Instruments Inc., Stafford, TX
Get access

Abstract

Earlier work revealed that the transverse thermal conductivity of thin films of amorphous SiO2 deposited on monocrystalline silicon decreased substantially when the film thickness was less than about 1 µm. When multiple interfaces were created by the intercalation of thin intermediate layers of polycrystalline silicon into the SiO2 film, the thickness effect was enhanced. This observation pointed to an interfacial effect. A model accounting for the interface effect is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mayer, J. W. and Lau, S. S., Electrical Materials Science (Macmillan Publishing Co., New York, 1990).Google Scholar
2. Majumdar, A., J. Heat Trans., 115, 7 (1993).10.1115/1.2910673Google Scholar
3. Lide, D. R., editor-in-chief, CRC Handbook of Chemistry and Physics, 77th ed., 1996 - 1997 (CRC Press, Boca Raton, FL 1997).Google Scholar
4. Griffin, A. J., Brotzen, F. R. and Loos, P. J., High Temperature and Materials Science, 33, 217 (1995).Google Scholar
5. Griffin, A. J., Brotzen, F. R. and Loos, P. J., J. Appl. Phys., 76, 4007 (1994).10.1063/1.357347Google Scholar
6. Griffin, A. J., Brotzen, F. R. and Loos, P. J., J. Appl. Phys., 75, 3761 (1994).10.1063/1.356049Google Scholar
7. Brotzen, F. R., Loos, P. J. and Brady, D. P., Thin Solid Films, 207, 197 (1992).10.1016/0040-6090(92)90123-SGoogle Scholar
8. Swartz, E. T. and Pohl, R. O., Appl. Phys. Lett., 51, 2200 (1987).10.1063/1.98939Google Scholar
9. Goodson, K. E., Flik, M. I., Su, L. T. and Antoniadis, D. A., J. Heat Trans., 116, 317 (1994).10.1115/1.2911402Google Scholar
10. Cahill, D. G., Katiyar, M. and Abelson, J. R., Phy. Rev. B 50, 6077 (1994).10.1103/PhysRevB.50.6077Google Scholar
11. Cahill, D. G., Rev. Sci. Instrum., 61, 802 (1990).10.1063/1.1141498Google Scholar
12. Kading, O. W., Skurk, H. and Goodson, K. E., Appl. Phys. Lett., 65, 1629 (1994).10.1063/1.112933Google Scholar
13. Lambropoulos, J. C. and Jolly, M. R., J. Appl. Phys., 66, 4230 (1989).10.1063/1.343963Google Scholar
14. Loos, P. J. (private communication).Google Scholar