Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T03:14:23.940Z Has data issue: false hasContentIssue false

Interdiffusion At a-Ge:H/Al and a-Si:H/Al Interfaces

Published online by Cambridge University Press:  01 January 1993

S.J. Jones
Affiliation:
epartment of Physics, Colorado School of Mines, D, Golden, CO 80401
A.B. Swartzlander-Franz
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Y. Chen
Affiliation:
epartment of Physics, Colorado School of Mines, D, Golden, CO 80401
D.L. Williamson
Affiliation:
epartment of Physics, Colorado School of Mines, D, Golden, CO 80401
Get access

Abstract

The degree of interdiffusion at the amorphous semiconductor/bulk Al interface was studied using Auger electron spectroscopy analysis. 300-500 Å thick a-Si:H and a-Ge:H films were deposited onto high-purity Al and 5052 Al alloy substrates and subsequently annealed to various temperatures up to 500 °C for 6 hrs. The high-purity Al is used as a substrate for our small-angle x-ray scattering studies of amorphous silicon-based alloys. For all the films deposited on the pure Al, little or no interdiffusion was noted at or below anneal temperatures of 400°C. This result is contrary to those commonly found for samples produced by evaporating Al onto the previously deposited amorphous semiconductor without breaking the vacuum where interdiffusion has been noted at temperatures at or below 200°C. We suggest interdiffusion in the amorphous semiconductor/bulk Al samples is hindered by the presence of a 150-300 Å Al oxide on the Al. A large amount of interdiffusion and partial crystallization is noted in the a-Ge:H sample after an anneal of 450°C while a temperature between 450 and 500°C is required for interdiffusion and crystallization to occur in the a-Si:H sample. In the case of the a-Ge:H films deposited on the 5052 Al alloy, interdiffusion occurs after 300°C anneals due possibly to the migration of Mg and other components of the alloy into the amorphous semiconductors or structural defects in the alloy which enhance interdiffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Turner, W.A., Jones, S.J., Pang, D., Bateman, B.F., Chen, J.H., Li, Y.-M., Marques, F.C., Wetsel, A.E., Wickboldt, P., Paul, W., Bodart, J., Norberg, R.E., El Zawawi, I. and Theye, M.L., J. Appl. Phys. 67, 7430 (1990).Google Scholar
2. Biegelsen, D.K., Street, R.A., Tsai, C.C. and Knights, J.C., Phys. Rev. B 20, 4839 (1979).Google Scholar
3. Knights, J.C. and Lujan, R.A., Appl. Phys. Lett. 35, 244 (1979).Google Scholar
4. Mahan, A.H., Raboisson, P. and Tsu, R., Appl. Phys. Lett. 50, 335 (1987).Google Scholar
5. Guha, S., Yang, J., Jones, S.J., Chen, Y. and Williamson, D.L., Appl. Phys. Lett. 61, 1444 (1992).Google Scholar
6. Ichimura, T., Ihara, T., Hama, T., Ohsawa, T., Sakai, H. and Uchida, Y., J. Non-Cryst. Solids 77&78, 901 (1985).Google Scholar
7. Williamson, D.L., Mahan, A.H., Nelson, B.P. and Crandall, R.S., Appl. Phys. Lett. 55, 783 (1989).Google Scholar
8. Jones, S.J., Chen, Y., Williamson, D.L. and Mooney, G.D., Mat. Res. Soc. Symp. Proc. 258, 229 (1992).Google Scholar
9. Stutzmann, M., Appl. Phys. Lett. 47, 22 (1985).Google Scholar
10. Schubert, M.B. and Bauer, G.H., Proc. 21stI.E.E.E. Photovol. Spec. Conf. 2, 1595 (1991).Google Scholar
11. Jones, S.J., Chen, Y., Williamson, D.L., Wickboldt, P., Pang, D., Wetsel, A., Paul, W. and Chen, J.H., unpublished.Google Scholar
12. Berry, W.B., Emery, K.A., Swartzlander, A.B. and Nelson, A.J., Proc. 20th I.E.E.E. Photovol. Spec. Conf. 1, 262 (1988).Google Scholar
13. Abramov, V.O., Avilov, A.S., Belokonov, A.N., Zarif’yants, Y.A., Milyaev, V.A. and Shirkov, A.V., Sov. Phys. Semicond. 19, 224 (1985).Google Scholar
14. Ishihara, S., Kitagawa, M., and Hirao, T., J. Appl. Phys. 62, 837 (1987).Google Scholar
15. van den Boogaard, M.J., Jones, S.J., Chen, Y. and Williamson, D.L., unpublished.Google Scholar
16. Uwasawa, K., Ishihara, F. and Matsumoto, S., Appl. Phys. Lett. 60, 1208 (1992).Google Scholar
17. Mathieu, H.J., Datta, M. and Landolt, D., J. Vac. Sci. Tech. A3, 331 (1985).Google Scholar
18. Zhao, X.-A., Banwell, T.C. and Nicolet, M.-A., Proc. SPIE 623, 255 (1986).Google Scholar
19. McCaldin, J.O. and Sankur, H., Appl. Phys. Lett. 19, 524 (1971).Google Scholar
20. Harper, J.M.E., Hörnström, S.E., Thomas, O., Charai, A. and Krusin-Elbaum, L., J. Vac. Sci. Tech. A7, 875 (1989).Google Scholar
21. Cai, W. and Wan, D., Thin Solid Films 219, 1 (1992).Google Scholar
22. Fujikawa, S.I., Hirano, K.I. and Fukushima, Y., Metal. Trans. 9A, 1811 (1978).Google Scholar
23. Fan, J.C.C. and Anderson, C.H., J. Appl. Phys. 52, 4003 (1981).Google Scholar
24.For example see, Konno, T.J. and Sinclair, R., Phil. Mag. B 66, 749 (1992).Google Scholar
25. Herd, S.R., Chaudhari, P. and Brodsky, M.H., J. Non-Cryst. Solids 7, 309 (1972).Google Scholar