Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T09:59:23.107Z Has data issue: false hasContentIssue false

Intentional Defect Incorporation in Metalorganic Vapor Phase Epitaxy Indium Gallium Arsenide by Oxygen Doping

Published online by Cambridge University Press:  26 February 2011

J. W. Huang
Affiliation:
Department of Chemical Engineering, University of Wisconsin, Madison, WI 53706
T. F. Kuech
Affiliation:
Department of Chemical Engineering, University of Wisconsin, Madison, WI 53706
Get access

Abstract

Intentional defect incorporation in metalorganic vapor phase epitaxy (MOVPE) InxGai-xAs was achieved by controlled oxygen doping using diethylaluminum ethoxide (DEALO). DEALO doping has led to the incorporation of Al and O, and the compensation of shallow Si donors in InxGai-xAs:Si with 0≤x≤ 0.25. DLTS analysis on a series of InxGa1-xAs:Si:O samples with 0≤x≤ 0.18 showed that oxygen incorporation led to a set of deep levels, similar to those found in DEALO doped GaAs. The characteristic deep levels appear to remain at a relatively constant energy with respect to the valence band.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Clawson, A. R., Mullin, D. P., and Elder, D. I., J. Crystal Growth 64, 90 (1983).Google Scholar
2. Rao, M. V. and Bhattacharya, P. K., J. Appl. Phys. 57, 333 (1985).Google Scholar
3. Wallis, R. H., di Forte Poisson, M-A, Bonnet, M., Beuchet, G. and Duchemin, J-P, Inst. Phys. Conf. Ser, 56, 73 (1981).Google Scholar
4. Goorsky, M.S., Kuech, T.F., Cardone, F., Mooney, P.M., Scilla, G.J., and Potemski, R.M., Appl. Phys. Lett. 58, 1979 (1991).Google Scholar
5. Huang, J. W., Gaines, D. F., Kuech, T. F., Potemski, R. M., and Cardone, F., J. Electron. Mater. 23, 659 (1994).Google Scholar
6. Huang, J. W. and Kuech, T. F., Appl. Phys. Lett. 65, 604 (1994).Google Scholar
7. Huang, J. W. and Kuech, T. F., J. Crystal Growth 145, 462 (1994).Google Scholar
8. Frankel, M. Y., Huang, J. W., and Kuech, T. F., Appl. Phys. Lett. 66, 634 (1995).Google Scholar
9. Mircea, A., Mitonneau, A., Haltais, J., and Jaros, M., Phys. Rev. B. 16, 3665 (1977).Google Scholar
10. Lang, R. V., Leslie, J. D., Webb, J. B., Roth, A. P., Sacilotti, M. A., and Masut, R. A., Can. J. Phys. 67, 283 (1989).Google Scholar
11. Irvine, A. C. and Palmer, D. W., Phys. Rev. Lett. 68, 2168 (1992).Google Scholar
12. Huang, J. W., Ryan, J. M., Bray, K. L., and Kuech, T. F. (unpublished).Google Scholar
13. Raisanen, A., Brillson, L. J., Goldman, R. S., Kavanagh, K. L., and Wieder, H., J. Electron. Mater. 23, 929 (1994).Google Scholar
14. Denker, M.S. (privatecommunication).Google Scholar
15. Park, Y. and Skowronski, M., J. Appl. Phys. 76, 5813 (1994).Google Scholar
16. CRC Handbook of Chemistry and Physics. 65th ed. (CRC Press, Inc., Boca Raton, Florida, 1984).Google Scholar
17. Kowalczyk, S. P., Schaffer, W. J., Kraut, E. A. and Grant, R. W., J. Vac. Sci. Technol. 20, 705 (1982).Google Scholar
18. Yu, P. W., Jogai, B., Rogers, T. J., Martin, P. A., and Ballingall, J. M., Appl. Phys. Lett. 65, 3263 (1994).Google Scholar