Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T04:21:16.569Z Has data issue: false hasContentIssue false

Integration of Carbon Nanotubes Devices Into Microelectronics

Published online by Cambridge University Press:  15 February 2011

W. Hoenlein
Affiliation:
Infineon Technologies, Corporate Research, 81739 Munich, Germany
F. Kreupl
Affiliation:
Infineon Technologies, Corporate Research, 81739 Munich, Germany
G.S. Duesberg
Affiliation:
Infineon Technologies, Corporate Research, 81739 Munich, Germany
A.P. Graham
Affiliation:
Infineon Technologies, Corporate Research, 81739 Munich, Germany
M. Liebau
Affiliation:
Infineon Technologies, Corporate Research, 81739 Munich, Germany
R. Seidel
Affiliation:
Infineon Technologies, Corporate Research, 81739 Munich, Germany
E. Unger
Affiliation:
Infineon Technologies, Corporate Research, 81739 Munich, Germany
Get access

Abstract

Carbon Nanotubes (CNTs) offer extraordinary properties for applications in microelectronics. We assess the methods used to grow CNTs for integration into microelectronics, in particular, metallic carbon nanotubes for vias and interconnects as well as semiconducting CNTs for fieldeffect devices are discussed. State-of-the-art CNTFETs are compared to Si-MOSFETs. A vertical CNTFET (VCNTFET) device concept is presented which offers better growth control, adding a new quality to microelectronics and making real 3-dimensional electronics possible.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y., Kim, S., Rinzler, A., Colbert, D., Scuseria, G., Tomanek, D., Fischer, J., Smalley, R., Science, 273, 483487 (1996).Google Scholar
2. Dresselhaus, M.S., Dresselhaus, G., Avouris, Ph. (editors), Carbon Nanotubes, Springer, Berlin, (2001).Google Scholar
3. Iijima, S., Nature 354 (1991) 5658T.W. Ebbesen, P.M. Ajayan, Nature, 358, 220-222 (1992).Google Scholar
4. Bronikowski, Michael J., Willis, Peter A., Colbert, Daniel T., Smith, K. A., and Smalley, Richard E., J. Vac. Sci. Technol. A 19, 4, 18001806 (2001).Google Scholar
5. Huang, Yu, Duan, Xiangfeng, Wei, Qingqiao, Lieber, Charles M., Science, 291, 630633 (2001).Google Scholar
6. Chen, X., Saito, T., Yamada, H., and Matsushige, K., Appl. Phys. Lett. 78, 3714 (2001).Google Scholar
7. Zhang, Y. and Iijima, S., Phys. Rev. Lett., 82, 34723474 (1999).Google Scholar
8. Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., Wang, G., Science, 274, 1701 (1996).Google Scholar
9. Dai, H., Surface Science, 500, 218241 (2002).Google Scholar
10. Wei, B. Q., Vajtai, R., Ajayan, P. M., Appl. Phys. Lett., 79, 11721174 (2001).Google Scholar
11.International Technology Roadmap for Semiconductors: http://public.itrs.net/Google Scholar
12. Steinhögl, W., Schindler, G., Steinlesberger, G., Engelhardt, M., Phys. Rev. B 66, (2002)Google Scholar
13. Kreupl, F., Graham, A. P., Duesberg, G. S., Steinhoegl, W., Liebau, M., Unger, E., Hoenlein, W., Microelectronic Engineering, 64, 399408 (2002).Google Scholar
14. Steinlesberger, G., Engelhardt, M., Schindler, G., Kretz, J., Steinhögl, W., Bertagnolli, E., Proceedings of 3rd European Workshop on Ultimate Integration of Silicon, ULIS 2002, Munich, Germany, pp. 62, (2002)Google Scholar
15. Duesberg, Georg S., Graham, Andrew P., Liebau, Maik, Seidel, Robert, Unger, Eugen, Kreupl, Franz, Hoenlein, Wolfgang, Nanoletters Vol. 3, 257259 (2003).Google Scholar
16. Hoenlein, W., Jpn. J. Appl. Phys., Vol. 41, 43704374 (2002).Google Scholar
17. Tans, S.J., Verschueren, A.R.M., Dekker, C., Nature, 393, 4952 (1998).Google Scholar
18. Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C., Science, 294, 13171320 (2001).Google Scholar
19. Wind, S. J., Appenzeller, J., Martel, R., Derycke, V., Avouris, Ph.. Appl. Phys. Lett., 80, 3817 (2002).Google Scholar
20. Javey, Ali, Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., Dai, H., Nature Materials, Vol. 1 No. 4, pp. 241246 (2002).Google Scholar
21. Avouris, Ph., Acc. Chem. Res., 35, 10261034 (2002).Google Scholar
22. Rosenblatt, S., Yaish, Y., Park, J., Gore, J., Sazonova, V., McEuen, P. L., Nanoletters, 2, 869 (2002).Google Scholar
23. Seidel, R., Liebau, M., Duesberg, G. S., Kreupl, F., Unger, E., Graham, A. P., Hoenlein, W., Pompe, W., Nanoletters, accepted, doi: nl034229z. (2003).Google Scholar
24. Seidel, R., Liebau, M., Unger, E., Graham, A. P., Duesberg, G. S., Kreupl, F., Hoenlein, W., Pompe, W., AIP Proceedings of the IWEPNM 2003, Kirchberg/Google Scholar
25. Ghani, T. et al., 100 nm Gate Length High Performance/ Low Power CMOS Transistor Structure, Technical Digest IEDM (1999).Google Scholar
26. Yu, Bin et al., FinFET Scaling to 10nm Gate Length, Technical Digest IEDM (2002).Google Scholar
27. Doris, Bruce et al., Extreme Scaling with Ultra-Thin Si Channel MOSFETs, Technical Digest IEDM (2002).Google Scholar
28. Guo, J., Lundstrom, M., Datta, S., Appl. Phys. Lett., 80 (17), 31923194 (2002).Google Scholar
29. Kreupl, F., Duesberg, G. S., Graham, A. P., Seidel, R., Liebau, M., Unger, E., Hoenlein, W. in: Borisenko, V. E., Gaponenko, S. V., Gurin, V. S. (Eds.) “Physics, Chemistry and Application of Nanostructures”, World Scientific, (2003).Google Scholar