Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T07:19:46.888Z Has data issue: false hasContentIssue false

Instant Release Fractions from Corrosion Studies with High Burnup LWR Fuel.

Published online by Cambridge University Press:  05 April 2012

Ella Ekeroth
Affiliation:
Studsvik Nuclear AB, Hot Cell Laboratory, SE-611 82 Nyköping, Sweden
Daqing Cui
Affiliation:
Studsvik Nuclear AB, Hot Cell Laboratory, SE-611 82 Nyköping, Sweden
Jeanett Low
Affiliation:
Studsvik Nuclear AB, Hot Cell Laboratory, SE-611 82 Nyköping, Sweden
Michael Granfors
Affiliation:
Studsvik Nuclear AB, Hot Cell Laboratory, SE-611 82 Nyköping, Sweden
Hans-Urs Zwicky
Affiliation:
Zwicky Consulting GmbH, Chilacherstr. 17, CH-5236 Remigen, Switzerland
Kastriot Spahiu
Affiliation:
SKB, Box 250, SE-101 24, Stockholm, Sweden.
Lena Zetterström Evins
Affiliation:
SKB, Box 250, SE-101 24, Stockholm, Sweden.
Get access

Abstract

During irradiation in the reactor, a fraction of the fission product inventory will have segregated either to the gap between the fuel and the cladding or to the grain boundaries in the fuel. Of these nuclides, the behavior of the fission gases is best known. The part of the inventory that is rapidly released upon contact with water is designated the instant release fraction (IRF). Previous studies have shown that IRF and fission gas release (FGR) seem to be correlated. Studies of the instant release fraction from high burnup fuel is of interest for the assessment of the safety of a geological repository.

The instant release fractions of 129I and 137Cs from five different light water reactor (LWR) fuel rods with a burnup range of 43 to 75 MWd/kgU and a fission gas release range from 0.9 to 5.0 % were studied. Four types of fuel samples (pellet, fragment, powder and fuel rodlet) have been used in the experiments. The results show that the fuel sample preparation method has a significant impact on the release from high burnup fuel samples over the time period covered by this study. Leaching of high burnup fuel samples with fuel detached from the cladding shows the highest release. The fractional 129I release from such fragment samples is similar to the FGR in the corresponding rod. On the other hand, corresponding fractional release of 137Cs is lower.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gray, W. J., Mater. Res. Soc. Symp. Proc., 556, 1999, pp. 487494.10.1557/PROC-556-487Google Scholar
2. Gray, W. J., Strachan, D. M. and Wilson, C. N., Mater. Res. Soc. Symp. Proc., 257, (1992), pp. 353360.10.1557/PROC-257-353Google Scholar
3. Roudil, D., Jégou, C., Broudic, V., Muzeau, B., Peuget, S. and Deschanels, X., J. Nucl. Mater. 362, 411415 (2007).10.1016/j.jnucmat.2007.01.086Google Scholar
4. Johnson, L., Günther-Leopold, I., Kobler Waldis, J., Linder, H. P., Low, J., Cui, D., Ekeroth, E., Spahiu, K., Evins, L. Z., J. Nucl. Mater. 420, 5462 (2012)10.1016/j.jnucmat.2011.09.007Google Scholar
5. Lewis, B. J., Hunt, C. E. L., and Iglesias, F.C., J. Nucl. Mater. 172, 197205 (1990).10.1016/0022-3115(90)90438-SGoogle Scholar
6. Lassman, K.A., Schubert, A., van de Laar, J. and Walker, C. T., Seminar Proc. 26-29, Sept. 2000, 321334, NEA, (2002).Google Scholar
7. Johnson, L. H. and McGinnes, D. F., Nagra NTB 02–07, Nationale Genossenschaft für die Lagerung Radioaktiver Abfälle. (2002).Google Scholar
8. Johnson, L. H., Poinssot, C., Ferry, C. and Lovera, P., Nagra NTB 04–08, Nationale Genossenschaft für die Lagerung Radioaktiver Abfälle, (2004).Google Scholar
9. Johnson, L. H. and Tait, J. C., SKB TR 97–18 , (1997).Google Scholar
10. Ferry, C., Piron, J-P., Poulesquen, A. and Poinssot, C., Mater. Res. Soc. Symp. Proc. 1107, 2008, pp. 447454.10.1557/PROC-1107-447Google Scholar
11. Zwicky, H-U., Low, J., Ekeroth, E., SKB TR 11–03 , (2011).Google Scholar
12. Forsyth, R., SKB TR 97–25 , (1997).10.2307/3465530Google Scholar
13. Izmer, A., Boulyga, S. F. and Becker, J. S., J. Anal. At. Spectrom. 18 13391345 (2003).10.1039/b306446hGoogle Scholar
14. Ledergerber, G., Valizadeh, S., Wright, J., Limbäck, M., Hallstadius, L., Gavillet, D., Abolhassani, S., Nagase, F., Sugiyama, T., Wiesenack, W. and Tverberg, T., Proceedings of 2010 LWR Fuel Performance/TopFuel/WRFPM, Orlando, Florida, USA, September 26-29, 2010.Google Scholar
15. Bernard, L.C., Jacoud, J.L, Vesco, P., J Nucl. Mater. 302, 125134 (2002)10.1016/S0022-3115(02)00793-6Google Scholar