Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T13:06:59.887Z Has data issue: false hasContentIssue false

In-Situ High Temperature XRD on U0.54Pu0.46O2-x A Study of the Miscibility Gap

Published online by Cambridge University Press:  27 April 2015

Michal Strach
Affiliation:
CEA, DEN, DEC, SPUA, LMPC, Cadarache F-13108 Saint-Paul-Lez-Durance, France, IM2NP, UMR 6122, CNRS- Aix Marseille Université, Case 251, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20, France
Renaud C. Belin
Affiliation:
CEA, DEN, DEC, SPUA, LMPC, Cadarache F-13108 Saint-Paul-Lez-Durance, France,
Jean-Christophe Richaud
Affiliation:
CEA, DEN, DEC, SPUA, LMPC, Cadarache F-13108 Saint-Paul-Lez-Durance, France,
Jacques Rogez
Affiliation:
IM2NP, UMR 6122, CNRS- Aix Marseille Université, Case 251, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20, France
Get access

Abstract

It has been shown in previous studies that a miscibility gap exists in the hypo-stoichiometric region UO2-PuO2-Pu2O3 with one phase poor in oxygen, and the other with an O/M (Oxygen to Metal ratio) close to 2.00. Data on the evolution of this region in temperature, especially in the vicinity of the oxygen content corresponding to the highest temperature at which the gap can be observed, is scarce. A high temperature X-ray diffractometer with a dedicated gas control setup was used to study the described region in-situ. We have observed reflections of the two cubic phases, with one increasing and the other decreasing in intensity during the thermal plateaus lasting up to 20 h. We compare the calculated lattice parameters with literature. We estimated the O/M evolution of our samples from a comparison of phase fractions values obtained by Rietveld refinement and calculations using the Calphad method.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belin, R.C., Strach, M., Truphémus, T., Richaud, J.-C., Rogez, J., J. Nucl. Mater. in press (2014).Google Scholar
Truphemus, T., Belin, R.C., Richaud, J.-C., Reynaud, M., Martinez, M.-A., Félines, I., Arredondo, A., Miard, A., Dubois, T., Adenot, F., Rogez, J., J. Nucl. Mater. 432, 378387 (2013).CrossRefGoogle Scholar
Dubrovinsky, L.S., Saxena, S.K, Phys. Chem. Miner. 24, 547550 (1997).CrossRefGoogle Scholar
TOPAS V4: General prole and structure analysis software for powder diffraction data. User's manual, Bruker AXS: Madison, WI (2005) .Google Scholar
Cheary, R., Coelho, A., J. Appl. Crystallogr. 25, 109121. (1992).CrossRefGoogle Scholar
Rietveld, H.M., J. Appl. Crystallogr. 2, 6571 (1969).CrossRefGoogle Scholar
Markin, T., Street, R.J., Inorg. Nucl. Chem. 29, 22652280 (1967).CrossRefGoogle Scholar
Guéneau, C., Dupin, N., Sundman, B., Martial, C., Dumas, J.-C., Gossé, S., Chatain, S., Bruycker, F.D., Manara, D., Konings, R.J.J., J. Nucl. Mater. 419, 145167 (2011).CrossRefGoogle Scholar
Lukas, H.L., Fries, S.G., Sundman, B., Computational Thermodynamics, The Calphad Method, (Cambridge Univ. Press 2007).CrossRefGoogle Scholar