Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T03:33:45.304Z Has data issue: false hasContentIssue false

In-Situ Etch to Improve Chemical Beam Epitaxy Regrown AlgaAs/GaAs Interfaces for HBT Applications

Published online by Cambridge University Press:  03 September 2012

Y.M. Hsin
Affiliation:
Department of Electrical and Computer Engineering University of California, San Diego, CA 92093-0407
N. Y. Li
Affiliation:
Department of Electrical and Computer Engineering University of California, San Diego, CA 92093-0407
C. W. Tu
Affiliation:
Department of Electrical and Computer Engineering University of California, San Diego, CA 92093-0407
P. M. Asbeck
Affiliation:
Department of Electrical and Computer Engineering University of California, San Diego, CA 92093-0407
Get access

Abstract

We have studied the etching effect of AlxGa1-xAs (0≤ x ≤ 0.5) by trisdimethylaminoarsenic (TDMAAs) at different substrate temperatures, and the quality of the resulting etched/regrown GaAs interface. We find that the etching rate of AlxGa1-x As decreases with increasing Al composition, and the interface trap density of the TDMAAs etched/regrown interface can be reduced by about a factor of 10 as deduced from capacitance-voltage carrier profiles. A smooth surface morphology of GaAs with an interface state density of 1.4×l011 cm−2 can be obtained at a lower in-situ etching temperature of 550°C. Moreover, by using this in-situ etching the I-V characteristics of regrown p-n junctions of Al0.35Ga0.65As/Al0.25Ga0.75As and Al0.35Ga0.65As/GaAs can be improved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 shimawaki, H., Amamiya, Y., Furuhata, N., and Honjo, K., Device Research Conference, 1993.Google Scholar
2 Gregory, H. J., Bonar, J. M., Ashburn, P., and Parker, G. J., Electronics Letters, V32 N9, p 850851, 1996 Google Scholar
3 Mui, D. S. L., Strand, T. A., Thibeault, B. J., Coldren, L. A., Petroff, P. M. and Hu, E. L., Inst. Phys. Conf. Ser. 141 (1995)69.Google Scholar
4 Tappura, K., Salokatve, A., Rakennus, K., Asonen, H., and Pessa, M., Appl. Phys. Lett. 57 (1990)2313.Google Scholar
5 Tsang, W.T., kapre, R., and Sciortino, P.F. Jr., J. Crystal Growth 136 (1994) 42.Google Scholar
6 Tateno, K. and Kohama, Y., Electronic Materials Conference, 1996.Google Scholar
7 Hou, H.Q., Hammons, B.E., and Chui, H.C., Electronic Materials Conference, 1996.Google Scholar
8 Villaflor, A. B., Asahi, H., Marx, D., Miki, K., Yamamoto, K. and Gonda, S., J. Crystal Growth 150(1995)638.Google Scholar
9 Marx, D., Asahi, H., Liu, X. F., Higashiwaki, M., Villaflor, A. B., Miki, K., Yamamoto, K., Gonda, S., Shimomura, S. and Hiyamizu, S., J. Crystal Growth 150 (1995) 551.Google Scholar
10 Gimmnich, P., Greiling, A. and Lorberth, J. L., Thalmann, C., Rademann, K., Zimmermann, G., Protzmann, H., Stolz, W., and Göbel, E. O., Mater. Sci. Eng. B17 (1993) 21.Google Scholar
11 Abernathy, C. R., Wisk, P. W., Bohling, D. A. and Muhr, G. T., Appl. Phys. Lett. 60 (1992) 2421.Google Scholar
12 Salim, S., Lu, J. P., Jensen, K. F. and Bohling, D. A., J. Crystal Growth 124 (1992) 126.Google Scholar
13 Ishikura, K., Takeuchi, A., Kurihara, M., Machida, H. and Hasegawa, F., Jap. J. Appl. Phys. 33 (1994) L494.Google Scholar
14 Yoshida and Sasaki, M., J. Crystal Growth 150 (1995) 557.Google Scholar