Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:59:23.206Z Has data issue: false hasContentIssue false

In-Situ Boron-Doped Epitaxial Silicon Films Grown by UHVRTCVD: Applications in Channel Engineering & Ultra-Shallow Junction Formation

Published online by Cambridge University Press:  10 February 2011

I. Ban
Affiliation:
ECE Department, North Carolina State University (NCSU), Raleigh, NC 27695-7911
M. C. Öztürk
Affiliation:
ECE Department, North Carolina State University (NCSU), Raleigh, NC 27695-7911
K. L. LEE
Affiliation:
IBM, T. J. Watson Research Center, Mail Stop 37–254, Yorktown Heights, NY 10598
Get access

Abstract

A low-thermal budget, in-situ boron doped silicon epitaxy process for channel engineering and ultra shallow junction formation is presented. Ultra-thin silicon films (100–500 Å) have been deposited in a single-wafer Ultra High Vacuum Rapid Thermal Vapor Deposition (UHV-RTCVD) reactor using disilane (Si2H6), diborane (B2H6), and chlorine (Cl2) at temperatures between 750- 800°C. Boron doping can be varied five orders of magnitude (1016 cm-3 1021 cm3) with very abrupt doping transitions (∼50–70 Å/decade). Short channel (Leff =0.12 /μm) lightly-doped nchannel MOSFETs have been successfully realized free of ion-implantation in the channel region. As another application, ultra-shallow, defect-free, abrupt junctions (<500 Å) through diffusion from selectively-deposited in-situ boron doped films have been demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sanganeria, M. K., Violette, K. E., and Öztüirk, M. C., “Low-temperature silicon epitaxy in an ultra high vacuum rapid thermal chemical vapor deposition reactor using disilane,”; Appl. Phys. Lett., vol.63, pp. 12251227, 1993.Google Scholar
[2] Violette, K. E., O'Neil, P. A., Öztürk, M. C., Christensen, K., and Maher, D. M., “On the Role of Chlorine in Selective Silicon Epitaxy by Chemical Vapor Deposition,”;; J. Electrochem. Soc., vol.143, pp. 32903296, 1996.Google Scholar
[3] Wakabayashi, H., Yamamoto, T., Tatsumi, T., Tokunaga, K., Tamura, T., Mogami, T., and Kunio, T., “A High Performance 0.1 um CMOS with Elevated Salicide using Novel Si-SEG Process,”; presented at IEDM, Washington, DC, 1997.Google Scholar
[4] Yan, R. H., Ourmazd, A., Lee, K. F., and Jeon, D. Y., “Scaling the Si Metal-Oxide- Semiconductor Field-Effect Transistor into the 0.1/pm Regime Using Vertical Channel Engineering,”;;Appl. Phys. Lett., vol.59, pp. 33153317, 1991.Google Scholar
[5] Aoki, M., Ishii, T., Yoshimura, T., and Kiyota, Y., “Design and Performance of 0.1-pm CMOS Devices Using Low-Impurity-Channel Transistors (LICT's),”;; IEEE Electron Device Letters, vol.13, pp. 5052, 1992.Google Scholar
[6] López-Villanueva, J. A., Gdimiz, F., Rolddn, J. B., Ghailan, Y., Carceller, J. E., and Cartujo, P. C., “Study of the Effects of a Stepped Doping Profile in Short-Channel MOSFET's,”;; IEEE Transactions On Electron Devices, vol.44, pp. 14251431, 1997.Google Scholar
[7] Takeuchi, K., Tatsumi, T., and Furukawa, A., “Channel Engineering for the reduction of Random -Dopant-Placemen t-I nduced Threshold Voltage Fluctuation,”; presented at IEDM, Washington, DC, 1997.Google Scholar
[8] Shahidi, G. G., Warnock, J., Acovic, A., and Agnello, P., “A High Performance 0.15 pum CMOS,” presented at Tech. Dig. Symp. VLSI Tech., 1993.Google Scholar
[9] Ohguro, T., Yamada, K., Sugiyama, N., Usuda, K., Akasaka, Y., Yoshitomo, T., Fiegna, C., Ono, M., Saito, M., and Iwai, H., “Tenth Micron P-MOSFETs with Ultra-thin Epitaxial Channel Laver Grown by Ultra-High-Vacuum CVD,”; presented at IEDM, Washington, DC, 1993.Google Scholar
[10] Matsuhashi, H., Ochiai, T., Kasai, M., Nakamura, T., and Nishikawa, S., “High- Performance Double-Layer Epitaxial-Channel PMOSFET Compatible with a Single Gate CMOSFET,” Tech. Dig. Symp. VLSI Tech., pp. 3637, 1996.Google Scholar
[11] Sanganeria, M. K., Ozttirk, M. C., Violette, K. E., Harris, G., Lee, A., and Maher, D. M., “Low thermal budget in-situ removal of oxygen and carbon on silicon for silicon epitaxy in an ultra high vacuum rapid thermal chemical vapor deposition reactor,”;; Appl. Phys. Lett., vol.66, pp. 12551257, 1995.Google Scholar
[12] Sanganeria, M. K., Violette, K. E., Oztuirk, M. C., Harris, G., and Maher, D. M., “Boron Incorporation in Epitaxial Silicon Using Si2H6 and B2H6 in an Ultrahigh Vacuum Rapid Thermal Chemical Vapor Deposition Reactor, ”;; J. Electrochem. Soc., vol.142, pp. 285289, 1995.Google Scholar
[13] P. A. O'Neil, Öztirk, M. C., Violette, K. E., Batchelor, D., Christensen, K., and Maher, D. M., “Optimization of Process Conditions for Selective Silicon Epitaxy Using Disilane, Hydrogen, and Chlorine,”;; J. Electrochem. Soc., vol.144, pp. 33093315, 1997.Google Scholar
[14] Morgenstern, T., Kuhne, H., Kokovin, G. A., Testova, N. A., and Titov, A. A., “Suppression of Epita-xial Silicon Layer Doping with Boron in the Presence of Hydrogen Chloride,”;; Cryst. Res. Technol., vol.22, pp. 7583, 1987.Google Scholar
[15] Hintzen, H. T. J. M., Bloem, J., and Giling, L. J., “The Incorporation of Boron in Silicon Epitaxial Layer Growth in the Presence of Small amounts of Water,”;; J. Electrochern. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY, vol.131, pp. 19001906, 1984.Google Scholar
[16] Kuhne, H., Fischer, A., Öztürk, M. C., and Sanganeria, M. K., “On the Mechanism of Boron Incorporation during Silicon Epitaxy by Means of Chemical Vapor Deposition,”;; J. Electrocheni. Soc., vol.143, pp. 634639, 1996.Google Scholar
[17] Agarwal, A., Eaglesham, D. J., Gossmann, H.-J., Pelaz, L., Herner, S. B., Jacobson, D. C., Haynes, T. E., Erokhin, Y., and Simonton, R., “Boron-Enhanced-Diffusion Of Boron: The Limiting Factor For Ultra-Shallow Junctions,” presented at IEDM, 1997.Google Scholar