Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T23:51:43.429Z Has data issue: false hasContentIssue false

InSb Czochralski Growth Single Crystals for InGaSb Substrates

Published online by Cambridge University Press:  24 February 2014

J. E. Flores Mena
Affiliation:
FCE – Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 sur, Ciudad Universitaria, Puebla, Puebla, 72500, México.
R. Castillo Ojeda
Affiliation:
Universidad Politécnica de Pachuca, Ex-Hacienda de Sta. Bárbara, Zempoala, Hidalgo. 43830. México.
J. Díaz Reyes*
Affiliation:
CIBA-Instituto Politécnico Nacional, Ex-Hacienda de San Juan Molino Km 1.5, Tepetitla, Tlaxcala, 90700, México.
Get access

Abstract

The massive crystal growth of single crystal semiconductors materials has been of fundamental importance for the actual electronic devices industry. As a consequence of this one, we can obtain easily a large variety of low cost devices almost as made ones of silicon. Nowadays, the III-V semiconductors compounds and their alloys have been proved to be very important because of their optical properties and applications. It is the case of the elements In, Ga, As, Sb, which can be utilized for the fabrication of radiation sensors. In this work we present the results obtained from the ingots grown by the Czochralski method, using a growth system made in home. These results include anisotropic chemical attacks in order to reveal the crystallographic orientation and the possible polycrystallinity. Isotropic chemical attacks were made to evaluate the etch pit density. Metallographic pictures of the chemical attacks are presented in this work. Among the results of these measurements, the best samples presented in this work showed mobilities of 62.000 cm2/V*s at room temperature and 99.000 cm2/V*s at liquid nitrogen temperature. Typical pit density was 10,000/cm2. The Raman spectra present two dominant peaks associated at Transversal Optical (TO)- and Longitudinal Optical (LO)-InSb, the first vibrational mode is dominant due to the crystalline direction of the ingots and second one is associated to high defects density.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kozhemyakin, G. N., J. Cryst. Growth, 360, 3537 (2012).CrossRefGoogle Scholar
Tanaka, A., Yoneyama, T., Kimura, M., Sukegawa, T., J. Cryst. Growth 186, 305308(1998).CrossRefGoogle Scholar
Haris, M., Hayakawa, Y, Chou, F.C., Veeramani, P., Babu, S. Moorthy, Journal of alloys and Compounds, 548, 2326 (2013).CrossRefGoogle Scholar
Satunkin, G., Progress in Crystal Growth and Characterization of Materials, 56, 1121 (2010).CrossRefGoogle Scholar
Vincent, Yip, F. S., Wilcox, William R., Materials Research Bulletin, 11, 895901 (1976).Google Scholar
Arafune, K., Kodera, K., Kinoshita, A., Hirata, A., J. Cryst. Growth 249, 429436 (2003).CrossRefGoogle Scholar
Hurle, D. T. J., J. Cryst. Growth 147, 239256 (1995).CrossRefGoogle Scholar
Tanaka, A., Shintani, J., Kimura, M., Sukegawa, T., J. Cryst. Growth 209, 625629 (2000).CrossRefGoogle Scholar
Dixit, V. K., Rodríguez, B. V., Bhat, H. L., J. Appl. Phys. 90, 17501753 (2001).CrossRefGoogle Scholar
van der Pauw, L. J., Philips Res. Repts 13, 19 (1958).Google Scholar
Burton, J. A., Kolb, E. D., Slichter, W. P. and Struthers, J. D., J. Chem. Phys. 21, 1991 (1953).CrossRefGoogle Scholar
Gatos, H. C., Lavine, M. C., Warekois, E. P., J. Electrochem. Soc., 108, 645649 (1961).CrossRefGoogle Scholar
Godines, J. A., Anda, F. De, Canales, A., Baños, L., Jara, D. Rios, Chem. Inform. 25, (1994). www.readcube.com/articles/10.1002/chin.199448256.Google Scholar
Yang, X., Wang, G., Slattery, P., Zhang, Jin Z., and Li, Y.. Crystal Growth & Design, 10, 24792482 (2010).CrossRefGoogle Scholar
Sendra, J. R., Armelles, G., Utzmeier, T., Anguita, J., and Briones, F., J. Appl. Phys. 79, 88538855 (1996).CrossRefGoogle Scholar
Siakavellas, M., Raptis, Y. S, and Anastassakis, E., J. Appl. Phys. 82, 62356239 (1997).CrossRefGoogle Scholar