Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T15:37:39.726Z Has data issue: false hasContentIssue false

Inorganic- Organic Hybrid Materials For Photonics

Published online by Cambridge University Press:  10 February 2011

M. Lal
Affiliation:
Photonics Research Laboratory State University of New York at Buffalo Buffalo, New York 14260
M. Joshi
Affiliation:
Photonics Research Laboratory State University of New York at Buffalo Buffalo, New York 14260
D. N. Kumar
Affiliation:
Photonics Research Laboratory State University of New York at Buffalo Buffalo, New York 14260
C. S. Friend
Affiliation:
Photonics Research Laboratory State University of New York at Buffalo Buffalo, New York 14260
J. Winiarz
Affiliation:
Photonics Research Laboratory State University of New York at Buffalo Buffalo, New York 14260
T. Asefa
Affiliation:
Photonics Research Laboratory State University of New York at Buffalo Buffalo, New York 14260
K. Kim
Affiliation:
Photonics Research Laboratory State University of New York at Buffalo Buffalo, New York 14260
Paras N. Prasad
Affiliation:
Photonics Research Laboratory State University of New York at Buffalo Buffalo, New York 14260
Get access

Abstract

Molecular materials comprised of inorganic:organic composites are of considerable interest in photonics, optoelectronics and biophotonics. We report broad band lasing and tunable filters in sol-gel processed poly (p-phenylene vinylene) PPV: Silica composites. Optical power limiting in near IR wavelength region is also reported in dye doped PPV: silica multiphasic nanocomposites. For making hybrid inorganic: organic composites the reverse micelle mediated synthesis technique has been exploited to synthesize dye encapsulated metal oxide particles, thiocresol capped CdS clusters, Cul and AgI nanoparticles. These particles were dispersed in polymeric matrix for applications in photoconductivity and photorefractive measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Brinker, C. J., Scherer, G. W., Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing (Academic Press, Inc. 1990), pp. 118.Google Scholar
(2) Burzynski, R., Prasad, P. N., Photonics and Nonlinear Optics with Sol-Gel Processed Inorganic Glass: Organic Polymer Composite, Klein, L.C. Ed.(Kluwer Academic: Boston, 1994), Ch- 19; R. Gvishi, U. Narang, G. Ruland, D. N. Kumar and P. N. Prasad, Appl. Organometallic Chem. 11, 107(1997).Google Scholar
(3) Hench, L. L., West, J. K., Chem. Rev. 90, 33(1990).10.1021/cr00099a003Google Scholar
(4) Manson, J. A., Sperling, L. H., Polymer Blends and Composites (Plenum Press: New York, 1976).10.1007/978-1-4615-1761-0Google Scholar
(5) Steigerwald, M. L.et al, J. Amer. Chem. Soc. 110, 3046 (1988).10.1021/ja00218a008Google Scholar
(6) Herron, N., Wang, Y., Eckert, H., J. Am. Chem. Soc. 112, 1322(1990).10.1021/ja00160a004Google Scholar
(7) Fischer, H. Ch., Henglein, A. J., J. Phys. Chem. 93, 5578(1989).10.1021/j100351a049Google Scholar
(8) Tobin, J. G., Colvin, V. L., Alivisatos, A. P., J.Vac.Sci.Tech. A9, 852(1991).10.1116/1.577328Google Scholar
(9) Brus, L.E., J. Chem. Phys. 80, 4403(1984).10.1063/1.447218Google Scholar
(10) Wang, Y., Herron, N., J. Phys. Chem. 95, 525(1991)10.1021/j100155a009Google Scholar
(11) Wang, Y., Herron, N., Chem. Phys. Lett. 200, 71(1992).10.1016/0009-2614(92)87047-SGoogle Scholar
(12) Wang, Y., , Pure and Appl. Chem. 68, 1475(1996).10.1351/pac199668071475Google Scholar
(13) Tessler, N., Denton, G. J., Friend, R. H., Nature, 382,695(1996).10.1038/382695a0Google Scholar
(14) Hide, F., Garc'ia, M. A. Di'az-, Schwartz, B. J., Anderson, M. R., Pei, Q., Heeger, A. J., Science, 273, 1833(1996).10.1126/science.273.5283.1833Google Scholar
(15) Hide, F., Schwartz, B. J., Garc'ia, M. A. Di'az-, Heeger, A. J., Chem. Phys. Lett. 256, 424(1996).10.1016/0009-2614(96)00450-2Google Scholar
(16) Kumar, D. N., Bhawalkar, J., Prasad, P. N., Applied Optics, 37, 3, 510(1997).10.1364/AO.37.000510Google Scholar
(17) Masui, T., Fujiwara, K., Machida, K., Adachi, G., Sakata, T., Mori, H., Chem. Mater. 9, 2197(1997).10.1021/cm970359vGoogle Scholar
(18) Pileni, M. P., J. Phys. Chem. 97, 6961(1993).10.1021/j100129a008Google Scholar
(19) Taylor, A., X-ray Metallography (Wiley, New York, 1961).Google Scholar
(20) Wang, Y., Herron, N., Physical Review B, 42(11), 7253(1990).10.1103/PhysRevB.42.7253Google Scholar
(21) Kundu, A., Khosravi, A. A., Kulkami, S. K., Singh, P., J. Mat. Sci. 32, 245(1997).10.1023/A:1018520425765Google Scholar
(22) Schildkraut, J. S., Appl. Phys. Lett. 58, 340(1991).10.1063/1.104680Google Scholar
(23) Alivisatos, A. P., Science, 271, 933(1996).10.1126/science.271.5251.933Google Scholar
(24) Moerner, W. E. and Silence, S. M., Chem. Rev, 94, 127(1994).10.1021/cr00025a005Google Scholar