Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T13:00:25.092Z Has data issue: false hasContentIssue false

Innovative gold nanoparticle patterning and selective metallization

Published online by Cambridge University Press:  29 May 2013

E.S. Kooij
Affiliation:
Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
M.A. Raza
Affiliation:
Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands Centre of Excellence in Solid State Physics, University of the Punjab, QAC, Lahore-54590, Pakistan
H.J.W. Zandvliet
Affiliation:
Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
Get access

Abstract

We present a simple, novel procedure to selectively deposit gold nanoparticles using pure water. It enables patterning of nanoparticle monolayers with a remarkably high degree of selectivity on flat as well as microstructured oxide surfaces. We demonstrate that water molecules form a thin ‘capping’ layer on exposed thiol molecules within the mercaptan self-assembled layer. This reversible capping of water molecules locally ‘deactivates’ the thiol groups, therewith inhibiting the binding of metallic gold nanoparticles to these specific areas. In addition, we show that this amazing role of water molecules can be used to selectively metalize the patterned gold nanoparticle arrays. Employing an electroless seeded growth process, the isolated seeds are enlarged past the percolation threshold to deposit conducting metal layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Reprinted from J. Colloid Interface Sci. 364, M.A. Raza, E.S. Kooij, A. van Silfhout, H.J.W. Zandvliet, B. Poelsema, Novel, highly selective gold nanoparticle patterning on surfaces using pure water, pp. 304–310. Copyright (2011), with permission from Elsevier.CrossRefGoogle Scholar
Libioulle, L., Bietsch, A., Schmid, H., Michel, B., Delamarche, E., Langmuir 15, 300 (1999).CrossRefGoogle Scholar
Piner, R.D., Zhe, J., Xu, F., Hong, S., Mirkin, C.A., Science 283, 661 (1999).CrossRefGoogle Scholar
Scheres, L., Klingebiel, B., ter Maat, J., Giesbers, M., de Jong, H., Hartmann, N., Zuilhof, H., Small 6, 1918 (2010).CrossRefGoogle Scholar
Xu, J., Drelich, J., Nadgorny, E.M., Langmuir 20, 1021 (2004).CrossRefGoogle Scholar
Chen, J., Mela, P., Möller, M., Lensen, M.C., ACS Nano 3, 1451 (2009).CrossRefGoogle Scholar
Mewe, A.A., Kooij, E.S., Poelsema, B., Langmuir 22, 5584 (2006).CrossRefGoogle Scholar
Raza, M.A., Kooij, E.S., van Silfhout, A., Zandvliet, H.J.W., Poelsema, B., J. Colloid Interface Sci. 364, 304 (2011).CrossRefGoogle Scholar
Kooij, E.S., Brouwer, E.A.M., Wormeester, H., Poelsema, B., Langmuir 18, 7677 (2002).CrossRefGoogle Scholar
Singh, J., Whitten, J.E., J. Phys. Chem. C 112, 19088 (2008).CrossRefGoogle Scholar
Senkevich, J.J., Yang, G.R., Lu, T.M., Colloids Surf. A 207, 139 (2002).CrossRefGoogle Scholar
Yang, S.R., Kolbesen, B.O., Appl. Surf. Sci. 255, 1726 (2008).CrossRefGoogle Scholar
Ledung, G., Bergkvist, M., Quist, A.P., Gelius, U., Carlsson, J., Oscarsson, S., Langmuir 17, 6056 (2001).CrossRefGoogle Scholar
Lide, D.R. (ed.), CRC Handbook of Chemistry and Physics, Taylor & Francis, Boca Raton, Fl. (2005).Google Scholar
Zuika, I.V., Bankovskii, Y.A., Russ. Chem. Rev. 42, 22 (1973).CrossRefGoogle Scholar
Allen, F.H., Bird, C.M., Rowland, R.S., Raithby, P.R., Acta Cryst. B 53, 696 (1997).CrossRefGoogle Scholar
Menefee, A., Alford, D., Scott, C.B., J. Chem. Phys. 25, 370 (1956).CrossRefGoogle Scholar
Yablonskii, O.P., Rodionova, N.M., Lapuka, L.F., J. Appl. Spectrosc. 19, 1303 (1973).CrossRefGoogle Scholar
Colebrook, L.D., Tarbell, D.S., Proc. Natl. Acad. Sci. USA 47, 993 (1961).CrossRefGoogle Scholar
Marcus, S.H., Miller, S.I., J. Am. Chem. Soc. 88, 3719 (1966).CrossRefGoogle Scholar
Yadav, J.S., Swamy, T., Reddy, B.V.S., Rao, D.K., J. Mol. Catal. A: Chem. 274, 116 (2007).CrossRefGoogle Scholar
Brown, K.R., Lyon, L.A., Fox, A.P., Reiss, B.D., Natan, M.J., Chem. Mater. 12, 314 (2000).CrossRefGoogle Scholar
Tabakman, S.M., Chen, Z., Casalongue, H.S., Wang, H., Dai, H., Small 7, 499 (2011).CrossRefGoogle Scholar
de Vries, A.J., Kooij, E.S., Wormeester, H., Mewe, A.A., Poelsema, B., J. Appl. Phys. 101, 053703 (2007).CrossRefGoogle Scholar