No CrossRef data available.
Article contents
Innovative Device Architecture for High Efficiency Thin Film Silicon Solar Cells
Published online by Cambridge University Press: 16 May 2012
Abstract
The challenge for all photovoltaic technologies is to maximize light absorption, convert photons with minimal losses to electrical charges and efficiently extract them towards the electrical circuit. For thin film silicon solar cells, a compromise must be found as light trapping is usually performed through textured interfaces, that are detrimental to the subsequent growth of dense and high quality silicon layers. We introduce here the concept of smoothening intermediate reflecting layers (IRL), enabling to combine high currents and good electrical quality in Micromorph devices in the superstrate configuration. After exposing the motivation for such structures, we validate the concept by showing a VOCenhancement when employing a polished silicon-oxide-based IRL. Shunting issues and additional reflection losses are pointed out with such technique, highlighting the need to develop alternative techniques for an efficient morphology adaptation before the microcrystalline silicon cell growth.
- Type
- Plasmonics
- Information
- Copyright
- Copyright © Materials Research Society 2012