Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:42:03.795Z Has data issue: false hasContentIssue false

Initial Growth of Metastable Titanium Disilicide at Amorphous Silicide/Crystalline Silicon Interface

Published online by Cambridge University Press:  25 February 2011

Z. Ma
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801.
L. H. Allen
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801.
S. Lee
Affiliation:
NCR Corporation, Colorado Springs, CO 80916.
Get access

Abstract

Initial stage of growth of metastable titanium disilicide (C49-TiSi2) was investigated by annealing Ti/doped polycrystalline Si bilayers deposited on oxidized Si wafers at 530°C and at a constant heating rate of 10°C/min. Morphological evolution of the C49-TiSi2 phase was studied by cross-sectional transmission electron microscopy (XTEM) and local chemistry was probed with a scanning transmission electron microscope (STEM) equipped with a nanoprobe. At the early stage, the C49-TiSi2 phase nucleates discontinuously along the amorphous silicide (a-TiSix )/crystalline Si (c-Si) interface and then exhibits simultaneous lateral growth and vertical growth. The results are interpretated using a model based upon preferential Si diffusion along interphase boundaries to the growth front.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murarka, S.P., Silicides for VLSI Applications (Academic, New York, 1983).Google Scholar
2. Lasky, J., Nakos, J., Cain, O., and Geiss, P., IEEE Trans. Electron Devices 38, 2629 (1991).CrossRefGoogle Scholar
3. Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240 (1985).Google Scholar
4. Ma, Z., Allen, L.H., and Lee, S., Mater. Res. Soc. Symp. Proc. 237, 661 (1992).Google Scholar
5. Jeon, H., Sukow, C.A., Honeycutt, J.W., Rozgonyi, G.A., and Nemanich, R.J., J. Appl. Phys. 71, 4269 (1992).Google Scholar
6. Clevenger, L.A., Harper, J.M.E., Cabral, C. Jr, Nobili, C., Ottaviani, G., and Mann, R., J. Appl. Phys. 72, 4978 (1992).Google Scholar
7. Holloway, K. and Sinclair, R., J. Appl. Phys. 61, 1359 (1987).Google Scholar
8. Wang, M.H. and Chen, L.J., Appl. Phys. Lett. 59, 2460 (1991).Google Scholar
9. Wang, M.H. and Chen, L.J., J. Appl. Phys. 71, 5919 (1992).Google Scholar
10. I.Raaijmakers, J.M.M. and Kim, K.B., J. Appl. Phys. 67, 6255 (1990).Google Scholar
11. d'Heurle, F.M. and Gas, P., J. Mater. Res. 1, 205 (1986).CrossRefGoogle Scholar
12. d'Heurle, F.M., J. Mater. Res. 3, 167 (1988).Google Scholar
13. Appelbaum, A., Knoell, R.V., and Murarka, S.P., J. Appl. Phys. 57, 1880 (1985).Google Scholar
14. Ogawa, S.I., Kouzaki, T., Yoshida, T., and Sinclair, R., J. Appl. Phys. 70, 827 (1991).CrossRefGoogle Scholar
15. Martin, J.W. and Doherty, R.D., Stability of Microstructure in Metallic Systems (Cambridge, New York, 1976).Google Scholar