Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T18:19:49.542Z Has data issue: false hasContentIssue false

InGaN Layers Grown on Al2O3/ZnO Substrates Prepared by Atomic Layer Deposition

Published online by Cambridge University Press:  01 February 2011

Nola Li
Affiliation:
[email protected], Georgia Institute of Technology, Electrical and Computer Engineering, 251 Atlantic Dr., D402, Atlanta, GA, 30318, United States
Shen-Jie Wang
Affiliation:
[email protected], Georgia Institute of Technology, Electrical and Computer Engineering, 777 Atlantic Dr., Atlanta, GA, 30332, United States
Jeff Nause
Affiliation:
[email protected], Cermet Inc., Atlanta, GA, 30318, United States
Adriana Valencia
Affiliation:
[email protected], Cermet Inc., Atlanta, GA, 30318, United States
Christopher Summers
Affiliation:
[email protected], Georgia Institute of Technology, Materials Science and Engineering, Atlanta, GA, 30332, United States
Ian Ferguson
Affiliation:
[email protected], Georgia Institute of Technology, Electrical and Computer Engineering, 777 Atlantic Dr., Atlanta, GA, 30332, United States
Get access

Abstract

Atomic layer deposition (ALD) of Al2O3 is used as a passivation layer on ZnO substrates before nitride growth by metalorganic chemical vapor deposition (MOCVD). This layer is being used to prevent Zn diffusion from the substrate, protect the ZnO surface from H2 back etching, and promote high quality nitride growth. ALD-Al2O3 films were grown at 100°C and then annealed in a furnace at various times at 1100°C for crystallization of the passivation layer. XRD results showed both Al2O3 and ZnAl2O4 phases at different intensities for 50 and 20nm ALD-AlM2O3 films. In addition, the InGaN layer has been successfully grown on the passivated ZnO substrate. Findings show that a short annealing time for the ALD-Al2O3 layer will be optimal for InGaN growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kobayashi, A., O., J., and Fujioka, H., J. Appl. Phys., 2006. 99(123513).Google Scholar
2. Namkoong, G., S.B., Lee, K., Trybus, E., Doolittle, W. A., Losurdo, M., Capezzuto, P., Bruno, G., Nemeth, B., and Nause, J., Appl. Phys. Lett., 2005. 87(184104–1).10.1063/1.2120912Google Scholar
3. Hamdani, F., Y., M., Smith, D., Tang, H., Kim, W., Salvador, A., Botchkarev, A.E., Gibson, J.M., Polyakov, A.Y., Skowronski, M., and Morkoc, H., J. Appl. Phys., 1998. 83(2).10.1063/1.366786Google Scholar
4. Zukauskas, A., S., M.S., and Gaska, R., 2002, New York: John Wiley. p. 75.Google Scholar
5. Thompson, G.H.B., 1980, Chichester: John Wiley. p.307.Google Scholar
6. Hsu, S. C., L., a.C.Y., Electr. Solid State Lett., 2006. 9(G171).Google Scholar
7. Wong, W. S., S., T., Cheung, N. W., Kneissl, M., Bour, D. P., Mei, P., Romano, L. T., and Johnson, N. M., Appl. Phys. Lett., 2000. 77(2822).10.1063/1.1319505Google Scholar
8. Popovici, G. et al. , Appl. Phys. Lett., 1997. 71(23).Google Scholar
9. Suzuki, T. et al. , Current Appl. Phys., 2004. 4(643).10.1016/j.cap.2004.01.039Google Scholar
10. Li, N, P., E.-H., Huang, Y, Wang, SJ, Valencia, A, Nemeth, B, Nause, J, and Ferguson, I, Proc. of SPIE, 2006. 6337(63370Z).Google Scholar
11. , Jakschik, a., S.a.e., Thin Solid Films, 2003. 425: p. 216220.Google Scholar
12. Ritala, , L., M.a.M., ed. Nalwa, H.S.. Vol. 1. 2002: Academic Press.Google Scholar
13. Zhang, L, J., H.C., Liu, C, Dong, J W, and Chow, P, Journal of Physics D: Applied Physics, 2007. 40: p. p. 37073713.Google Scholar
14. Groner, M.D., E., J.W., Fabreguette, F.H., and George, S.M., Thin Solid Films, 2002. 413: p. 186197.Google Scholar
15. Gu, Shulin, Z., R., Sun, Jingxi, Zhang, Ling, and Kuech, T. F., Appl. Phys. Lett., 2000. 76(23).Google Scholar
16. Wang, S. J., N.L., and Park, E. H., Lien, S. C. and Feng, Z. C., Valencia, A. Nause, J., and Ferguson, I., J. Appl. Phys., 2007. 102.Google Scholar