Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-02T23:23:57.899Z Has data issue: false hasContentIssue false

Infrared Study of Amorphous Crystalline Phase Transition in an Annealed Amorphous Hydrogenated Silicon Carbon Alloy Film

Published online by Cambridge University Press:  26 February 2011

D. K. Basa
Affiliation:
Dept. of Physics, Utkal University, Bhubaneswar 751004, India.
F. W. Smith
Affiliation:
Dept. of Physics, City College of New York, New York 10031.
Get access

Abstract

An amorphous hydrogenated silicon carbon alloy film (a Si1 x Cx :H with x = 0.29) was prepared by glow discharge decomposition of a silane and ethylene gas mixture. A careful and detailed investigation of the infrared absorption was undertaken in the range 400 to 4000 cm1 for both the as deposited (T =250°C) and annealed (up to 1200°C) film. This study demonstrates clearly that there is a structural change from amorphous to microcrystalline at T =8000C and then to crystalline phase at T a=1200° C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Anderson, D.A. and Spear, W. E., Philos. Mag. 35, 1 (1977).Google Scholar
2. Wieder, H., Cardona, M., and Guarnieri, C. R., Phys. Status. Solidi B 92, 99 (1979).Google Scholar
3. Mui, K., Basa, D. K., and Smith, F.W., J. Appl. Phys. 59, 582 (1986).Google Scholar
4. Mui, K., Basa, D. K., Corderman, R., and Smith, F. W., Phys. Rev. B 35, 8089 (1987).Google Scholar
5. Tawada, Y., Tsuge, K., Kondo, M., Okamoto, H., and Hamakawa, Y., J. Appl. Phys. 53, 5273 (1982).Google Scholar
6. Morimoto, A., Kataoka, T., Kumeda, M., and Shimizu, T., Philos. Mag. B 50, 517 (1984).Google Scholar
7. McKenzie, D. R., J. Phys. D: Appl. 18, 1935 (1985).Google Scholar
8. Basa, D. K. and Smith, F. W., Thin Solid Films (communicated).Google Scholar
9. Fujimoto, F., Ootsuka, A., Komaki, K., Iwata, Y., Yamane, I., Hamashita, H., Hashimoto, Y., Tawada, Y., Nishimura, K., Okamoto, H. and Hamakawa, Y., Jpn. J. Appl. Phys. 23, 810 (1984).Google Scholar
10. Nakazawa, K., Ueda, S., Kumeda, M., Morimoto, A. and Shimizu, T. Jpn. J. Appl. Phys. 21, L176 (1982).Google Scholar
11. Fang, C. J., Ley, L., Shanks, H.R., Gruntz, K.J., and Cardona, M. Phys. Rev. B 22, 6140 (1980).Google Scholar
12. Lucovsky, G., Solid State Commun. 29, 571 (1979).Google Scholar
13. Beeman, D., Tsu, R., and Thorpe, M. F., Phys. Rev. B 32, 874 (1985).Google Scholar
14. Lannin, J. S. in Semiconductors and Semimetals, edited by Pankove, J. (Academic Press, Vol.21 Part B, New York, 1984), p. 159.Google Scholar
15. Iqbal, Z., Veprek, S., Webb, A. P. and Capezzuto, P., Solid State Commun. 37, 993 (1981).Google Scholar
16. Spitzer, W. G., Kleinman, D., and Walsh, D., Phys. Rev. 113, 127 (1959); 113, 133 (1959).Google Scholar
17. MacKenzie, K. D., Eggert, J. R., Leopold, D. J., Li, Y. M., Lin, S. and Paul, W., Phys. Rev. B 31, 2198 (1985).Google Scholar
18. Smith, F.W. and Ghidini, G., J. Electrochem. Soc. 129, 1300 (1982).Google Scholar