Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T14:18:38.157Z Has data issue: false hasContentIssue false

Infrared Lattice Vibrations of Nitrogen-doped ZnO Thin Films

Published online by Cambridge University Press:  01 February 2011

Makoto Hirai
Affiliation:
[email protected], Nanomaterials and Nanomanufacturing Research Center, University of South Florida, 4202 East Fowler Avenue, ENB 261B,, Tampa, FL, 33620-5350, United States
Ashok Kumar
Affiliation:
[email protected], University of South Florida, Department of Mechanical Engineering, Tampa, FL, 33620-5350, United States
Get access

Abstract

Nitrogen (N) is the most promising p-type dopant for zinc oxide (ZnO), and its bonding state must be governed by the substitution of N atoms into anion sites. We have synthesized un-doped ZnO and N-doped ZnO thin films by utilizing a pulsed laser deposition (PLD) method. The N-doped ZnO thin film possessed shorter c-axis length than the un-doped ZnO thin film. This fact seems to be owing to that Zn-N bond length is shorter than Zn-O bond length in wurtzite structure. Besides, from the result of Fourier transform infrared (FT-IR) measurement, the absorption peak of the N-doped ZnO thin film emerged at 406 cm−1, and was attributed to transverse optical (TO) phonon of E1 mode. The infrared lattice vibrations of the N-doped ZnO thin films can be induced by the complex factors consisting of not only the decreases in reduced mass and interionic distance, but also the increase in covalency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kobayashi, A., Sankey, O. F., and Dow, J. D., Phys. Rev. B 28, 946 (1983).10.1103/PhysRevB.28.946Google Scholar
2 Bian, J. M., Li, X. M., Zhang, C. Y., Yu, W. D., and Gao, X. D., Appl. Phys. Lett. 85, 4070 (2004).10.1063/1.1808229Google Scholar
3 Barnes, T. M., Olson, K., and Wolden, C. A., Appl. Phys. Lett. 86, 112112 (2005).10.1063/1.1884747Google Scholar
4 Fons, P., Tampo, H., Kolobov, A. V., Ohkubo, M., Niki, S., Tominaga, J., Carboni, R., Boscherini, F., and Friedrich, S., Phys. Rev. Lett. 96, 045504 (2006).Google Scholar
5 Winter, M. J. in WebElements-the periodic table on the WWW, http://www.shef.ac.uk/chemistry/web-elements/; Emsley, J., “The Elements”, Oxford University Press (1989).Google Scholar
6Powder Diffraction File, ICDD International Centre for Diffraction Data, Swarthmore, PA: ZnO (00-036-1451).Google Scholar
7 Cimpoiaşu, A., Pers, N. M. van der, Keyser, T. H. de, Venema, A., and Vellekoop, M. J., Smart Mater. Struct. 5, 744 (1996).Google Scholar
8 Chen, H.-Y., and Lu, F.-H., J. Vac. Sci. Technol. A 21, 695 (2003).10.1116/1.1566787Google Scholar
9Powder Diffraction File, ICDD International Centre for Diffraction Data, Swarthmore, PA: Zn3N2 (00-035-0762).Google Scholar
10 Park, C. H., Zhang, S. B., and Wei, S.-H., Phys. Rev. B 66, 073202 (2002).Google Scholar
11 Martin, R. M., Phys. Rev. B 6, 4546 (1972).Google Scholar
12 Damen, T. C., Porto, S.P. S., and Tell, B., Phys. Rev. 142, 570 (1966).10.1103/PhysRev.142.570Google Scholar
13 Ashkenov, N., Mbenkum, B. N., Bundesmann, C., Riede, V., Lorenz, M., Spemann, D., Kaidashev, E. M., Kasic, A., Schubert, M., Grundmann, M., Wagner, G., Neumann, H., Darakchieva, V., Arwin, H., and Monemar, B., J. Appl. Phys. 93, 126 (2003).10.1063/1.1526935Google Scholar
14 Gordy, W., J. Chem. Phys. 14, 305 (1946).10.1063/1.1724138Google Scholar
15 Hirai, M. and Kumar, A.: J. Vac. Sci. Technol. A 25, 1534 (2007).10.1116/1.2778687Google Scholar