Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T15:16:12.246Z Has data issue: false hasContentIssue false

Influences of Polarization Effects in the Electrical Properties of Polycrystalline MgZnO/ZnO Heterostructure

Published online by Cambridge University Press:  31 January 2011

Huai-An Chin
Affiliation:
[email protected], National Taiwan University, Graduate Institute of Photonics and Optoelectronics, Taipei, Taiwan, Province of China
Chih-I Huang
Affiliation:
[email protected], National Taiwan University, Graduate Institute of Photonics and Optoelectronics, Taipei, Taiwan, Province of China
Yuh-Renn Wu
Affiliation:
[email protected], National Taiwan University, Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, Taipei, Taiwan, Province of China
I-Chun Cheng
Affiliation:
[email protected], National Taiwan University, Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, Taipei, Taiwan, Province of China
Jian Z. Chen
Affiliation:
[email protected], National Taiwan University, Institute of Applied Mechanics, No.1 Sec.4 Roosevelt Rd., Taipei, 10617, Taiwan, Province of China
Kuo-Chuang Chiu
Affiliation:
[email protected], Industrial Technology Research Institute, Materials Research Laboratories, Hsinchu, Taiwan, Province of China
Tzer-Shen Lin
Affiliation:
[email protected], Industrial Technology Research Institute, Materials Research Laboratories, Hsinchu, Taiwan, Province of China
Get access

Abstract

ZnO has shown great promise for the application in optoelectronic devices. Since the modulation of conductivity is one of the key issues in device performances, we have applied the Monte Carlo method to analyze the mobility of poly-crystalline MgZnO/ZnO heterostructure thin film layer in this paper. The effects of the grain boundary scattering, ionized impurity scattering, as well as phonon scattering are considered. Our study shows that with a design of modulation doping by including the effects of spontaneous and piezoelectric polarization, the grain boundary potential can be suppressed to improve the mobility of the ZnO layer by order(s) of magnitude. Simulation results are also confirmed by our experimental works that polarization effects play an important role to attract carriers and to increase the mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Su, S. C., Lu, Y. M., Zhang, Z. Z., Shan, C. X., Li, B. H., Shen, D. Z., Yao, B., Zhang, J. Y., Zhao, D. X., and Fan, X. W., Appl. Phys. Lett., vol. 93, p. 082108, 2008.10.1063/1.2977478Google Scholar
2 Cohen, D. J., Ruthe, K. C., and Barnett, S. A., J. Appl. Phys., vol. 96, p. 459, 2004 10.1063/1.1760239Google Scholar
3 Sun, J., Mourey, D. A., Zhao, D., Park, S. K., Nelson, S. F., Levy, D. H., Freeman, D., Corvan, P. C., Tutt, L., and Jackson, T. N., IEEE Electron Dev. Lett., vol. 29, p. 721, 2008.10.1109/LED.2008.923206Google Scholar
4 Tampo, H., Matsubara, K., Yamada, A., Shibata, H., Fons, P., Yamagata, M., Kanie, H., and Niki, S., Journal of Crystal Growth, vol. 301, p. 358, 2007.10.1016/j.jcrysgro.2006.11.169Google Scholar
5 Wu, Yuh-Renn and Singh, Madhusudan and Singh, Jasprit, IEEE Trans. Electron Dev., vol. 53, p. 588, 2006.Google Scholar
6 Wu, Yuh-Renn and Singh, Jasprit, J. Appl. Phys., vol. 101, p. 113712, 2007.10.1063/1.2745286Google Scholar
7 Guo, B., Ravaioli, U., and Staedele, M., Computer Physics Communications, vol. 175, p. 482, 2006.10.1016/j.cpc.2006.06.008Google Scholar
8 Joshi, R. P. and Srivastava, A., Appl. Phys. Lett., vol. 69, p. 1786, 1996.10.1063/1.117486Google Scholar
9 Kim, S., Kang, B. S., Ren, F., Heo, Y. W., Ip, K., Norton, D. P., and Pearton, S. J., Appl. Phys. Lett., vol. 84, no. 11, p. 1904, 2004.10.1063/1.1669082Google Scholar
10 Shimura, Y., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., and Hosono, H., Thin Solid Films, vol. 516, p. 5899, 2008.10.1016/j.tsf.2007.10.051Google Scholar
11 Hiramatsu, T., Furuta, M., Furuta, H., Matsuda, T., Li, C., and Hirao, T., Journal of Crystal Growth, vol. 311, no. 2, p. 282, 2009.10.1016/j.jcrysgro.2008.10.097Google Scholar
12 Nunes, P., Fortunato, E., and Martins, R., Thin Solid Films, vol. 383, p. 277, 2001.10.1016/S0040-6090(00)01577-7Google Scholar
13 Tampo, H., Shibata, H., Maejima, K., Yamada, A., Matsubara, K., Fons, P., Kashiwaya, S., Niki, S., Chiba, Y., Wakamatsu, T., and Kanie, H., Appl. Phys. Lett., vol. 93, p. 202104, 2008.10.1063/1.3028338Google Scholar
14 Malashevich, A. and Vanderbilt, D., Appl. Phys. Lett., vol. 93, p. 045106, 2008.Google Scholar