Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T07:24:32.085Z Has data issue: false hasContentIssue false

Influence of the Doping Level at Boron Doped Nanocrystalline Diamond Films in the Electrochemical Determination of Nitrite

Published online by Cambridge University Press:  21 February 2012

Jorge T. Matsushima
Affiliation:
LAS / INPE, 12245-970, São Jose dos Campos, SP, Brazil.
Diego H.L. Souza
Affiliation:
LAS / INPE, 12245-970, São Jose dos Campos, SP, Brazil.
Fernando A. Souza
Affiliation:
LAS / INPE, 12245-970, São Jose dos Campos, SP, Brazil.
Adriana F. Azevedo
Affiliation:
LAS / INPE, 12245-970, São Jose dos Campos, SP, Brazil.
Mauricio R. Baldan
Affiliation:
LAS / INPE, 12245-970, São Jose dos Campos, SP, Brazil.
Neidenei G. Ferreira
Affiliation:
LAS / INPE, 12245-970, São Jose dos Campos, SP, Brazil.
Get access

Abstract

In this paper, the influence of the doping level at boron doped nanocrystalline diamond (BDND) films in the electrochemical determination of nitrite was reported. The morphology and the structure modifications as function of the boron doping level increase were observed. Two different doping levels were considered. A BDND film with a doping level of 30.000 ppm and one another with a doping level of 10.000 ppm was used. The columnar growth for the 30.000 ppm BDND led to a higher surface roughness and also to a greater grain size when compared to that 10.000 ppm BDND. The Raman spectra shown higher sp2-bonded carbon amount in grain boundary for the 10.000 ppm BDND film due to decrease of the grain size. The morphological and structural modifications of the BDND films were crucial for nitrite oxidation process. The 30.000 ppm BDND electrode presented a better sensitivity to the nitrite oxidation and a lower detection limit (DL) on the “as-grown” condition, while the 10.000 ppm BDND electrode presented a better analytical sensitivity and a lower DL after the surface pre-treatment with hydrogen plasma.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Frontistis, Z., Brebou, C., Venieri, D., Mantzavinos, D. and Katsaounis, A., J. Chem. Technol. Biotecnol. 8, 1233 (2011).Google Scholar
2. Zhu, X., Ni, J., Wei, J., Xing, X. and Li, H., Journal of Hazardous Materials 189, 127 (2011).Google Scholar
3. Georgeaud, V., Diamond, A., Borrut, D., Grange, D. and Coste, M., Water Sci. Technol. 63, 206 (2011).Google Scholar
4. Matsushima, J.T., Silva, W.M., Azevedo, A.F., Baldan, M.R. and Ferreira, N.G., Appl. Surf. Sci. 256, 757 (2009).Google Scholar
5. Riu, J., Maroto, A. and Rius, F.X., Talanta 69, 288 (2006).Google Scholar
6. Camargo, A., Aguirre, M.J., Cheuquepan, W., Chen, Y.-Y. and Ramirez, G., Electroanalysis 20, 2635 (2008).Google Scholar
7. Cicala, G., Bruno, P., Bénédic, F., Silva, F., Hassouni, K. and Senesi, G.S., Diam. Relat. Mater. 14, 421 (2005).Google Scholar
8. Ma, K.L., Zhang, W.J., Zou, Y.L., Chong, Y.M., Leung, K.M., Bello, I. and Lee, S.T., Diam. Relat. Mater. 15, 626 (2006).Google Scholar
9. Issaoui, R., Achard, J., Silva, F., Tallaire, A., Mille, V. and Gicquel, A., Physica Status Solidi A, 208, 2023 (2011).Google Scholar
10. Levy-Clement, C., Ndao, N.A., Katty, A., Bernard, M., Deneuville, A., Comninellis, C. and Fujishima, A., Diam. Relat. Mater. 12, 606 (2003).Google Scholar
11. Ferrari, A.C. and Robertson, J., Philos. Trans. Roy. Soc. Lond. A 362, 2477 (2004).Google Scholar
12. Bernard, M., Baron, C. and Deneuville, A., Diam. Relat. Mater. 13, 896 (2004).Google Scholar
13. Spataru, N., Rao, T.N., Tryk, D.A. and Fujishima, A., J. Electrochem. Soc. 148, E112 (2001)Google Scholar
14. Mocak, J., Bond, A.M., Mitchell, S. and Scollary, G., Pure & Appl. Chem. 69, 297 (1997).Google Scholar