Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T23:04:22.288Z Has data issue: false hasContentIssue false

Influence of The Dielectric on The Growth and Performance of Pentacene Thin Film Transistors

Published online by Cambridge University Press:  15 March 2011

D. Knipp
Affiliation:
Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304
R. A. Street
Affiliation:
Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304
B. Krusor
Affiliation:
Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304
J. Ho
Affiliation:
Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304
R. B. Apte
Affiliation:
Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

The electronic transport and the device properties of pentacene thin film transistors are reported, showing the influence of the dielectric on the structural and transport properties. The structure and morphology of pentacene films on organic and inorganic dielectrics were compared by x-ray diffraction measurements and atomic force microscopy. For the investigated dielectrics we observed a clear correlation between the morphology and the structural properties of the highly polycrystalline films. In the case of inorganic dielectrics the roughness of the dielectric has a distinct influence on the morphology and the structural properties, whereas the films on organic dielectrics bonding between pentacene and the dielectric may have an influence on the growth mechanism. We find that careful control of the deposition conditions give films with similar transport properties on organic and inorganic dielectrics. To study the electronic properties we have realized inverted staggered transistors. The TFTs exhibit mobilities of ∼0.4 cm2/Vs and on/off ratios of 108 on organic and inorganic dielectrics. The influence of the dielectric on the device mobility, threshold voltage and sub-threshold voltage slope are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schön, J.H., Berg, S., Kloc, Ch., Batlogg, B., Science 287, 1022–123 (2000).Google Scholar
2. Karl, N., Organic Semiconductors, Landolt Boernstein/New Series Group III, Vol 17, edited by Madelung, O., Schulz, M., Weiss, H. (Springer, Berlin, 1985) Subvol. 17i pp. 106218.Google Scholar
3. Laudise, R.A., Kloc, C., Simpkins, P.G., Siegrist, T., J. of Crystal Growth 187(3-4), 449454 (1998).Google Scholar
4. Sasaoka, T., Sekiya, M., Yumoto, A., Yamada, J., Hirano, T., Iwase, Y., Yamada, T., Ishibashi, T., Mori, T., Asano, M., Tamura, S., Urabe, T., SID conference Proc. 384 (2001).Google Scholar
5. Klauk, H., Gundlach, D. J., Nichols, J. A., Sheraw, C. D., Bonse, M., and Jackson, T. N., Solid State Technology 43 (3), 6377 (2000).Google Scholar
6. Knipp, D., Murti, D.K., Apte, R., Krusor, B., Jiang, L., Lu, J.P., Ong, B.S., Street, R.A., Mat. Res. Soc. Symp. (2001) in print.Google Scholar
7. Jentsch, T., Juepner, H. J., Brzezinka, K.W., Lau, A., Thin Solid Films 315 273280 (1998).Google Scholar
8. Knipp, D., Street, R.A., Krusor, B., Apte, R.B., Ho, J., SPIE Proc. 3366 820 (2001).Google Scholar
9. Schön, J. H., Batlogg, B., J. Appl. Phys, 89 (1), 336 (2001).Google Scholar
10. Nelson, S.F., Lin, Y.-Y., Gundlach, D.J., Jackson, T.N., Appl. Phys. Lett. 72 (15), 1854 (1998).Google Scholar