Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:59:00.168Z Has data issue: false hasContentIssue false

Influence of the arc Chamber Design and of the Surrounding Atmosphere on the Characteristics and Temperature Distributions of Ar-H2 and Ar-He Spraying Plasma Jets

Published online by Cambridge University Press:  21 February 2011

Ph. Roumilhac
Affiliation:
Laboratoire de Thermodynamique et plasma, 123 Av. A. Thomas 87060 LIMOGES Cedex, France
J.F. Coudert
Affiliation:
Laboratoire de Thermodynamique et plasma, 123 Av. A. Thomas 87060 LIMOGES Cedex, France
P. Fauchais
Affiliation:
Laboratoire de Thermodynamique et plasma, 123 Av. A. Thomas 87060 LIMOGES Cedex, France
Get access

Abstract

The key parameters controlling the thermomechanical properties of plasma sprayed coatings (d.c. plasma spraying) are the heat and momentum transfers between the plasma jets and the injected particles. These, beside the particles size and injection velocity distributions as well as the plasma gas nature, depend strongly on the plasma isotherms lengths and diameters which in turn are controlled by nozzle, arc chamber and plasma gas injector designs. This paper is devoted to the study of these last parameters for Ar-H2 and Ar-He plasma jets flowing in air or in controlled atmosphere chambers filled, at atmospheric pressure, with nitrogen or argon. After a brief description of the working principle of d.c. spraying plasma torches (thoriated tungsten cathode, stick type) and of the experimental set ups (automatized emission spectroscopy and energy balance of the plasma torch) are presented successively the influence of: - the gas injection close to the cathode tip on the plasma jet behaviour - the gas injector design on the plasma jet isotherms lengths and diameters - the gas nature (Ar-H2 or Ar-He) and the surrounding atmosphere on the same parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fauchais, P., Grimaud, A., Vardelle, A., Vardelle, M., Ann. Phys. Fr. 14, pp 261310 (1989)Google Scholar
2. Pfender, E., Thermal Spray, Advances in Coatings Technology, (Pub) ASM. Int. (1988), pp 110 Google Scholar
3. Fauchais, P, Coudert, J.F., Vardelle, A., Vardelle, M., Grimaud, A., Roumilhac, Ph., Thermal Spray, Advances in Coatings Technology, pp 1119, (Pub) ASM. Int., (1988)Google Scholar
4. Fauchais, P., Vardelle, M., Vardelle, A., Coudert, J.F., Metallurgical Transaction B, 20B, pp 263276, (1989)Google Scholar
5. Finkelnburg, W., Maecker, H., Encyclopedia of Physics, Ed. Flügge, S., (Pub) Springer-Verlag Germany,22, p 224, (1956)Google Scholar
6. Andrews, C.W.D., An Introduction to the Physics of Plasma Torches, Surfacing Technology, Surfacing Journal, (1974)Google Scholar
7. Fauchais, P., Rev. Int. Htes. Temp. et Refract., 5 pp 7187, (1968)Google Scholar
8. Nachman, N., Rev. Int. Htes. Temp. et Refract..10, pp 6575, (1973)Google Scholar
9. Pfender, E., Electric Arcs and Gas Heaters, Ch.5, in Gaseous Electronics, Vol.1, Ed. Hirsh, N.N., Oskam, H.J., Academic Press, p 291, N.Y. (1978)Google Scholar
10. Kassabji, F., Fauchais, P., Rev. Phys. Appl., 16, pp 549577, (1981)Google Scholar
11. Barbeck, K.D., Nicoll, A.R., Proc. of ATTAC 88, Osaka, pp 113–118, (1988)Google Scholar
12. Dilawari, A.H., Szekely, J., Int. J. Heat Mass Transfer, 30, (11), pp 23572372 (1987)Google Scholar
13. Dilawari, A.H., Szekely, J., Plasma Chemistry, Plasma Processing, 7, (3), pp 317339, (1987)Google Scholar
14. Chyou, Y.P., Pfender, E., Plasma Chemistry, Plasma Processing, 2, (2), pp 291328 (1989)Google Scholar
15. Spores, R., Pfender, E., Thermal Spray Technology Conf. Proc., (Pub) ASM Int. pp 8596, (1989)Google Scholar
16. Roumilhac, Ph., Vardelle, A., Vardelle, M., Fauchais, P., Thermal Spray Technology Conf. Proc., (Pub) ASM Int., (1989)Google Scholar
17. Roumilhac, Ph., Coudert, J.F., Leger, J.M., Grimaud, A., Ducos, M., Fauchais, P. Conf. Proc., (Pub) Plasma Technick Symposium, p 105, vol 1, Switzerland, (1988)Google Scholar
18. Roumilhac, Ph., University Thesis, Univ. of Limoges, France, (March 1990)Google Scholar
19. Brossa, M., Pfender, E., Plasma Chemistry, Plasma Processing, 8, (1), p 75, (1988)Google Scholar
20. Vardelle, A., State Thesis, Univ. of Limoges, France, (1988)Google Scholar