Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:37:44.588Z Has data issue: false hasContentIssue false

The Influence of Temperature Gradients on Partial Pressures in a Cvd Reactor

Published online by Cambridge University Press:  22 February 2011

T.G.M. Oosterlaken
Affiliation:
DIMES/ Section Submicron Technology, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands
G.J. Leusink
Affiliation:
DIMES/ Section Submicron Technology, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands
G.C.A.M. Janssen
Affiliation:
DIMES/ Section Submicron Technology, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands
S. Radelaar
Affiliation:
DIMES/ Section Submicron Technology, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands
K.J. Kuijlaars
Affiliation:
Kramers Laboratorium voor Fysische Technologie, Delft University of Technology, Prins Bernhardlaan 6, 2628 BW Delft, The Netherlands
C.R. Kleijn
Affiliation:
Kramers Laboratorium voor Fysische Technologie, Delft University of Technology, Prins Bernhardlaan 6, 2628 BW Delft, The Netherlands
H.E.A. Van Den Akker
Affiliation:
Kramers Laboratorium voor Fysische Technologie, Delft University of Technology, Prins Bernhardlaan 6, 2628 BW Delft, The Netherlands
Get access

Abstract

The influence of temperature gradients on the partial pressures of a binary mixture in a cold wall low pressure chemical vapor deposition reactor was determined by Raman spectroscopy of the gaseous species in the reactor. It is demonstrated for the first time that the partial pressure of the heavy constituent in the hot region of a low pressure reactor is reduced by 35 % due to the Soret effect. Model calculations that included the Soret effect are in agreement with the experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Granneman, E.H.A., Thin Solid films, 228, 1 (1993).Google Scholar
2 Hasper, A., Kleijn, C.R., Holleman, J., Middelhoek, J., and Hoogendoorn, C.J., J. Electrochem. Soc. 138, 1729 (1991).Google Scholar
3 Schmitz, J.E.J., Sluys, W.L.N. van der, and Montree, A.H., Proceedings of “Tungsten and other advanced metals for VLSI/ULSI Applications V (1989), p 117, ed. Wong, S.S., Furukawa, S., Materials Research Society, Pittsburgh, Pennsylvania (1990).Google Scholar
4 Leusink, G.J., Oosterlaken, T.G.M., Janssen, G.C.A.M., and Radelaar, S., Thin Solid Films 228, 125128 (1993).Google Scholar
5 Hirschfelder, J.O., Curtiss, C.F. and Bird, R.B., “Molecular theory of Gases and Liquids”, John Wiley and Sons Inc., New York, 1967.Google Scholar
6 Chapman, S., Dootson, F.W., Phil. Mag. 33, p 268 (1917).Google Scholar
7 Kleijn, C.R., Hoogendoorn, C.J., Hasper, A., Holleman, J., and Middelhoek, J., J. Electrochem. Soc. 138(2), 509 (1991).Google Scholar
8 Kleijn, C.R., J. Electro. Chem. Soc. 138 (7), 2190 (1991).Google Scholar
9 Measures, R.M., Analytical Laser Spectroscopy, Chemical Analysis 50 (1979), ed. Omenetto, Nicolò, John Wiley & Sons, New York, USA.Google Scholar
10 Herzberg, G., Molecular Spectra and Molecular structure I, II, second edition, (1950), Van Nostrand Reinhold Company, New York USA.Google Scholar
11 Hargis, P.J. jr., Applied Optics 20, (1), 149 (1981).Google Scholar
12 Oosterlaken, T.G.M. et al. , to be submitted to J. Appl. Phys.Google Scholar